AFRALIS®

The
AutoLisp

Tutorials
Visual Lisp

Written and Compiled by Kenny Ramage
afralisp@mweb.com.na

http://www.afralisp.com

mailto:afralisp@mweb.com.na
http://www.afralisp.com/

Copyright ©2002 Kenny Ramage, All Rights Reserved.

afralisp@mweb.com.na
http://www.afralisp.com

This publication, or parts thereof, may not be reproduced in any form, by any method, for any
purpose, without prior explicit written consent and approval of the author.

The AUTHOR makes no warranty, either expressed or implied, including, but not limited to
any implied warranties of merchantability or fitness for a particular purpose, regarding these
materials and makes such materials available solely on an "AS-IS" basis. In no event shall
the AUTHOR be liable to anyone for special, collateral, incidental, or consequential damages
in connection with or arising out of purchase or use of these materials. The sole and
exclusive liability to the AUTHOR, regardless of the form of action, shall not exceed the
purchase price of the materials described herein.

The Author reserves the right to revise and improve its products or other works as it sees fit.
This publication describes the state of this technology at the time of its publication, and may
not reflect the technology at all times in the future.

AutoCAD, AutoCAD Development System, AutoLISP, Mechanical Desktop, Map, MapGuide,
Inventor, Architectural Desktop, ObjectARX and the Autodesk logo are registered trademarks
of Autodesk, Inc. Visual LISP, ACAD, ObjectDBX and VLISP are trademarks of Autodesk, Inc.

Windows, Windows NT, Windows 2000, Windows XP, Windows Scripting Host, Windows

Messaging, COM, ADO®, Internet Explorer, ActiveX®, .NET®, Visual Basic, Visual Basic for
Applications (VBA), and Visual Studio are registered trademarks of Microsoft Corp.

All other brand names, product names or trademarks belong to their respective holders.

Contents

Page Number Chapter
Page 5 Object Model
Page 7 The Visual Lisp Editor
Page 17 The Beginning
Page 30 Viewing Objects
Page 33 Properties & Methods
Page 44 Arrays
Page 51 Selecting Objects
Page 59 Collections
Page 67 Reactors
Page 78 Menu's
Page 91 Error Trapping
Page 96 Layers
Page 103 Profiles
Page 108 Attributes
Page 114 Attributes Re-visited
Page 120 Loading VBA Files
Page 124 Directories and Files
Page 137 Compiling AutoLisp Files
Page 146 VLAX Enumeration Constants
Page 148 Polylines
Page 162 The Utilities Object
Page 171 Visual Lisp and VBA
Page 180 Visual Lisp and HTML

Page 183

Acknowledgements and Links

[Application (Global) j

—(Preferences

o

— Document=

[Document

)

Preferences

)

3DFace

S0Paly

30 Salid

Arc

Attribute

AttributeR et

Blocks Block
|—(Database
ModelSpace
Paperspace
|—(P*fiesnvport
Dictionaries —[Dictionary)
|
[®Recard j
DimStyles — DirmiStyle)
Groups —[EGraup j
Layers —[Layer j
Lavouts —[Layout j
Linetypes —[Linetype)
PlotConfigurations — PletConfiguration |
Fegizteredpps —[Hegisteredﬁpplicatiun)
SelectionSets —{ Selectionset |
TextStyles —{ TestStye)
LCss —[s j
WiEs —[WiEny)
Wiewwparts —[Wiewvport j

BlockRef

Circle

DimaPoint &ngular

DimaAligned

Dim&ngular

DimDiametric

DimOrdinste

PreferencesDisplay :l

PreferencesDratting j

PreferencesFiles :l

PreferencesOpensave

PreferencesOutput

PreferencezProfiles

PreferencezSelection

PreferencesSystem

L L L DL L L L L

Preferenceslzer

LN SR N T SR

DimFadial

Hyperlinks

DimRotated

Ellipse

ExternalReference

Hatch

Lesder

LightweightPalyline

Lime

MinzertBlock

AL AL AL L L L L L L L L L L L L L L L L L L L

MLine

TTTTTTTTTTTTTTTTTTTITTITT

K

Hyperlink j

TTTTTTTTTTTTTTTT

—| R L= L S R |_'x J _l;_ MLine
—[DatabaseF‘referenn:es) —[M Texd
_[Plat j —[Pairt
_[Litlty) —[Polyfacehesh
MenuBar _[FIE
I_ E— —[Polygonbdezh
—[Faster
hMenuzroups —[Fay
L(MenuGroup) —[Fegion
T Popuphenus _[Shape
F'IIIFIL.IF:ME!I'IL,I _[=olid
[F‘u::pupl‘-.dnlanurtem j _(ATE
— Text
] T':'Dllbars —[Tolerance
Tu:u:|:l::|ar _[Trace
[Toolbarttem :l —[¥Line
Color LEGEND Shape
Database resident entity Collection

[supports [AcadErtity and lAcadObject)

Databaze resident ohject

[supports lAcadObject)

Mon-databasze resident

j Ohject

Using the Visual Lisp Editor

This tutorial is a crash course in using the Visual Lisp Editor, and is not intended to be
detailed or fully comprehensive. The aim is to show you the main functions of the Editor
with the intention of getting you up and running as quickly as possible.

Right, enough waffle, let's get started. Fire up AutoCAD and open a new drawing.

Now choose "TOOLS" - "AUTOLISP" - "VISUAL LISP EDITOR".

The Visual Lisp Editor will open and should look like this :

The VLISP Console window is similar in some respects to the AutoCAD Command
window, but has a few extra features. You enter text into the Console window following

the Console prompt which looks like this :

$

Type this in the Console prompt and then press "Enter" :
_$(setq a"Test")

Now type this and again press "Enter" :

$a

Your Console window should look like this :

‘l_% (setq a “"test")
" lltEStll

0 a

..tESt..

¢

To view the value of a variable at the AutoCAD Command prompt, you must precede the
variable name with an exclamation mark. (!) In VLISP, you simply type the variable
name.

Unlike the AutoCAD Command window, where pressing SPACEBAR causes expression
evaluation, text input at the VLISP Console prompt is not processed until you press
ENTER. This permits you to do the following in the Console window:

B Continue an AutoLISP expression on a new line. To continue entering an expression on
a new line, press CTRL +ENTER at the point you want to continue.

I Input more than one expression before pressing ENTER. VLISP evaluates each
expression before returning a value to the Console window.

B [f you select text in the Console window (for example, the result of a previous command
or a previously entered expression), then press ENTER, VLISP copies the selected text
at the Console prompt.

The VLISP Console window and the AutoCAD Command window differ in the way they
process the SPACEBAR and TAB keys. In the VLISP Console window, a space plays no
special role and serves only as a separator. In the AutoCAD Command window, pressing
the SPACEBAR outside an expression causes AutoCAD to process the text immediately,
as if you had pressed ENTER.

Using the Console Window History

You can retrieve text you previously entered in the Console window by pressing TAB
while at the Console prompt. Each time you press TAB, the previously entered text
replaces the text at the Console prompt. You can repeatedly press TAB until you cycle
through all the text entered at the Console prompt during your VLISP session. After
you've scrolled to the first entered line, VLISP starts again by retrieving the last
command entered in the Console window, and the cycle repeats. Press SHIFT + TAB to
scroll the input history in the opposite direction. For example, assume you entered the
following commands at the Console prompt:

(setqg origin (getpoint "\nOrigin of inyn sign: "))

(setqg radius (getdist "\nRadius of inyn sign: " origin))

(setq half-r (/ radius 2))

(setqg origin-x (car origin))

(command "_.CIRCLE" origin radius)

To retrieve commands entered in the Console window

1 Press TAB once. VLISP retrieves the last command entered and places it at the
Console prompt:

_$ (command " _.CIRCLE" origin radius)

2 Press TAB again. The following command displays at the Console prompt:
_$ (setq origin-x (car origin))

3 Press TAB again. VLISP displays the following command:

_$ (setq half-r (/ radius 2))

4 Now press SHIFT+ TAB . VLISP reverses direction and retrieves the command you
entered after the previous command:

_$ (setq origin-x (car origin))
5 Press SHIFT+ TAB again. VLISP displays the following command:
_$ (command " _.CIRCLE" origin radius)

This was the last command you entered at the Console prompt.

6 Press SHIFT+ TAB again. Because the previous command retrieved was the last
command you entered during this VLISP session, VLISP starts again by retrieving the
first command you entered in the Console window:

_$ (setqg origin (getpoint "\nOrigin of inyn sign: "))

Note that if you enter the same expression more than once, it appears only once as you
cycle through the Console window input history. You can perform an associative search

in the input history to retrieve a specific command that you previously entered. To
perform an associative search of the Console input history

1 Enter the text you want to locate. For example, enter (command at the Console prompt:
_$ (command

2 Press TAB. VLISP searches for the last text you entered that began with (command:

_$ (command " _.CIRCLE" origin radius)

If VLISP does not find a match, it does nothing (except possibly emit a beep). Press
SHIFT+ TAB to reverse the direction of the associative search and find progressively
less-recent inputs.

Interrupting Commands and Clearing the Console Input Area

To interrupt a command entered in the Console window, press SHIFT + ESC. For
example, if you enter an invalid function call like the following:

_$ ((setq origin-x (car origin)
(>

Pressing SHIFT + ESC interrupts the command, and VLISP displays an "input discarded"
message like the following:

((_>; <input discarded>

_$

If you type text at the Console prompt, but do not press ENTER, then pressing ESC
clears the text you typed. If you press SHIFT + ESC, VLISP leaves the text you entered in
the Console window but displays a new prompt without evaluating the text.

If you type part of a command at the Console prompt, but activate the AutoCAD window
before pressing ENTER, VLISP displays a new prompt when you next activate the VLISP
window. The text you typed is visible in the Console window history, so you can copy

and paste it, but you cannot retrieve the text by pressing TAB , because it was not added
to the Console history buffer.

Using the Visual Lisp Editor (cont)

Right, enough messing about. Let's load some coding. Choose "File" - "New" and then
copy and paste this coding into the text editor :

(defun C:SLOT ()

(setvar "CMDECHOQ" 0)
(setvar "BLIPMODE" 0)
(setq oldsnap (getvar "OSMODE"))

(setq diam (getdist "\nSlot Diameter : ")
Ingth (getdist "\nSlot Length : "))

(while
(setq ptl (getpoint "\nIinsertion point: "))
(setvar "OSMODE" 0)
(setq pt2 (polar ptl 0.0 (/ (- Ingth diam) 2.0))
pt3 (polar pt2 (/ pi 2.0) (/ diam 4.0))
pt4 (polar pt3 pi (- Ingth diam))
pt5 (polar pt4 (* pi 1.5) (/ diam 2.0))
pt6 (polar pt5 0.0 (- Ingth diam)))

(command "PLINE" pt3"W" (/ diam 2.0) "" pt4
"ARC" pt5 "LINE" pt6 "ARC" "CLOSE")
(setvar "OSMODE" oldsnap)
);while
(princ)
);defun
(princ)

The coding should look like this in the text editor :

& slot_lzp

kdefun C:SLOT ()

{setvar "CHDECHO™ @)
{setvar "BLIPHODE"™ @)
{setq oldsnap {getwar “O5HODE™)})

{setq diam (getdist “"‘nSlot Diameter : "}
lngth {getdist "\n3lot Length : "})

{while

{setq pt1 {(getpoint "\nlInsertion point: "'}}

{setvar ""05SHMODE"" @)

{cetq pt2 (polar pt1 8.8 {(f (- 1lngth diam} 2.8}))
pt3 (polar pt2 (/f pi 2.8) (/ diam 4_8})
pt4 {polar pt3d pi (- lngth diam}}
pt5 (polar pth4 (= pi 1.5) (/ diam 2.8})
pté {polar pt5 8.8 (- 1lngth diam))}

{command "PLIHE" pt3 "W (f diam 2_8) """ pth
“ARC" ptS5 "LINE"™ ptd "ARC™ "'CLOSE")
{setvar "0SHMODE"™ oldsnap)
y;while
{princ)
Y;defun
{princ)

il

Before we go any further, let's have a wee chat about the colors.

As soon as you enter text in the VLISP Console or text editor windows, VLISP attempts to
determine if the entered word is a built-in AutoLISP function, a number, a string, or some
other language element. VLISP assigns every type of element its own color. This helps
you detect missing quotes or misspelled function names. The default color scheme is
shown in the following table.

AutoLISP Language Element Color
Built-in functions and protected
Blue
symbols
Strings Magenta
Integers Green
Real numbers Teal
Comments Magenta, on gray background
Parentheses Red
Unrecog.nlzed items (for example, Black
user variables)

You can change the default colors. But, do yourself a favour. Don't!!

Selecting Text

The simplest method to select text is to double-click your left mouse button. The amount
of text selected depends on the location of your cursor.

[If the cursor immediately precedes an open parenthesis, VLISP selects all the following
text up to the matching close parenthesis.

B If the cursor immediately follows a close parenthesis, VLISP selects all preceding text up
to the matching open parenthesis.

B If the cursor immediately precedes or follows a word, or is within a word, VLISP selects
that word.

Hint : Would you like help on any AutoLisp function? Double-click on the function name
to select it, and then select the "Help" toolbar button. Help for the specific function will be

displayed.
|

To load the "Slot" lisp routine, select the "Load active edit window" toolbar button :

o vy

This loads your coding into memory. To run the routine, type this at the Console prompt :
_$ (c:slot)
The program should now run, switching over to the AutoCAD screen when required. You

can also just run a selection of code if you desire. Select the lines of code you would like
to run and choose the "Load selection" toolbar button, and then press "Enter."

| Eltﬁ[ﬂ/ ?EH‘*“&

Only the lines of code you selected will be run, Great for debugging.

Talking about debugging, Place the cursor in front of the (defun C:SLOT () statement and
press "F9". This places a "Breakpoint" into your program. Now run the program again.
Execution should stop at the Breakpoint mark. Now press "F8". By continuously pressing
"F8" you can "single step" through your whole program :

& slot_lzp M=l E3
[idefun C:SLOT () iI

{setvar "CHDECHOD™ 8)
{setvar "BLIPHODE'™ 8}

cetg oldsnap (getvar “"OSHODE'"})

{setq diam (getdist “"\nSlot Diameter : ")
lngth {(getdist ""\n3lot Length : ")}

Let's go one step further. Select the "diam" variable and then select the "Add Watch"
toolbar button :

Add watch

The "Watch" dialog box will appear :

u&;\#atch
6 (1] 2410

Dlak = 20.0

Note how the variable "diam" is listed along with it's present value. Repeat this process
for all the other variables until the Watch" dialog looks like this :

¢ (] 2400

FT1 < fil
FT2 < nil

FT3 = nil

FPT4 = nil
FTS = nil
FPTE = nil
LNGTH =&0.0
Dl&M =200

Now run the program again, still "single" stepping through. Notice how the values of the
variables change as the program proceeds.

O.K. let's liven things up a bit. Select " Ctrl-Shift-F9" to clear all breakpoints. Now select
the "Debug" pull down menu and then "Animate". Now run the program again.

Hey, it's running automatically!!! Take note of the variables changing in the "Watch"
window as the program does it's thing.

Well that's about it in regards to the Visual Lisp Editor. The editor has a lot more
functions than I've shown you here, but these | feel, are some of the more important ones
to get you started.

The Beginning.

So, you want to start coding using Visual Lisp? Two things. First you really need to have
a good understanding of AutoLisp before you carry on with this Tutorial. VLisp is not an
replacement for AutoLisp, it is an extension to it. Standard AutoLisp is used extensively
throughout Visual Lisp, so a good knowledge is a necessity. Secondly, in this tutorial |
am not going to delve deep into the why's and where's of VLisp. The intention is to give
you a basic grounding into what VLisp can do and how to go about doing it. For
example, some of my terminology may not be technically correct as I've tended to
convert some things to layman terms for clarity and ease of understanding. Don't worry,
we'll correct all that in future tutorials.

O.K. are you ready to start? Right, fire up AutoCAD with a blank drawing and open the
Visual Lisp Editor. You can write Visual Lisp using Notepad just like AutoLisp if you
wish, but | prefer to use the Visual Lisp Editor as we can, and will, use the "Watch" and
the "Inspect" windows.

Close the Editor window, leaving the "Console" window open, and then open the
"Watch" window. Right, we're ready to start.

Type this at the Console prompt and then press enter :

_$ (vl-load-com)

Did you notice that nothing happened? Before you can use the VLisp functions with
AutoLisp, you need to load the supporting code that enables these functions. The (vl-
load-com) function first checks if the VLisp support is already loaded; if so, the function
does nothing. If the functions are not loaded, (vl-load-com) loads them. Pretty important |
would say!

"All applications that use Visual Lisp should begin by calling (vl-load-com). If (vl-load-
com) is not loaded, the application will fail."

After loading the Visual Lisp functions, the next step is to establish communication with
the AutoCAD Application object.

Think of a filing cabinet. The cabinet itself is your computer and one of the filing cabinet
drawers is AutoCAD. We are going to open the AutoCAD drawer to have a look at what is
inside.

To establish this connection, we use the (vlax-get-acad-object) function.

Type this at the Console prompt and then press enter :

_$ (setqg acadObject (vlax-get-acad-object))

Now, double click on the variable "acadObject" in the Console window to select it, and
then add it to the "Watch" window. It should look something like this :

SCADOBJECT = #<VLA-OBJECT lAcaddpplication 00adc058:

We are now looking at the Acad Application object. Double click on the "TACODBJECT" in
the "Watch window to open the "Inspect” window :

UL Inspect: VLA-OBJECT e
[#<VLA-OBJECT IAcadipplication D0adc0B8:

<hotivelocument: B<WLA-OBJECT lacadDocument 00eeli54:
<opplication: #HLA-OBJECT lAcaddpplication 00adc083:
<Caphion: AutoCAD 2000 - [DrawingT. dwg]

<Documents: B<WYLA-OBJECT lAcadDocuments 018aeacl:
<FullMame> DMNACADZOODNACAD . EXE

<Height> 580

<Localeld: 1033

<MenuBarr HOCLA-OBJECT lacadMenuBar 013asaad s
sMenuGroups: #OLA-OBJECT lacadMenuGroups 00461 aca:
<Mamer AutoCAD

<Path: [D:AACADZ2000

B LA-OBJECT lacadPreferences 018aeasc:

i< Preferences:

<VYBE> #<VLA-OBJECT VBE 02820fd0:
Sferzion: 15.0h [Hardware Lock)
OMigibler wlax-tue

Swidth: 803

Owfindowleft: -4

OwfindowState: 3

SOWfindowTop: -4

This is a list of all the Objects within the AutoCAD Application Object.

Now double click on <Preferences> :

L_JJ} Inzpect: YLA-OBJECT

[HevLA-DBJECT lAcadPrelerences 018ad3der

<opplication: #HOLA-OBJECT lAcaddpplication 00adc083:
<Dizplay: #NLA-OBJECT lAcadPreferencesDizplay 018ad31 o
{Draftln} ﬂ{‘»-’L.-'-‘-. DEJEET I.-'-‘-.cadF'referenn:esDraftm EI'I Eau:lE'I =

{DpenSave} ﬂ{‘»-’L.-'-‘-. DEJEET I.&cadPreferencestenSave 13ad324:
<Output: $LA-OBJECT lAcadPreferencez0utput 018ad328:
<Profiles> #MLA-OBJECT lAcadPreferencesProfiles 018ad32c:
<Selection: #<VLA-OBJIECT lAcadPFreferencesSelection 018ad330:
<Sustem: HNLA-OBJECT lAcadPreferencesSpstemn 018ad334:
<Uzerr #OLA-OBJECT lacadPreferencesldzer 018ad338:

This is all the Objects within the AutoCAD - Application - Preferences object . Now
double click on <Files>:

Ll Inspect: VLA-OBJECT - o I E S es s]

[HevLA-OBJECT m.:adpreferecesme 01 aa' T

<OltFantFile: zimples.she
<AT ablettenuFile:
<opplication: #HLA-OBJECT lAcaddpplication 00adc083:
<outoSavePath: CAWINDODWSATEMPY,
<ConfigFilex D:A\ACAD2000%acad2000.cfg
<CuztomDictionany> DAACADZ000Nzupporthzample. cuz
sDefaultlntermetURAL: DAACADZ000NHome. him
<DrversPathy: DAACADZ2000Mdry
<FaontFileMap: D:AACAD2000%zupporthacad. frmp
<HelpFilePath: D:A\ACADZ2000%helpsacad hip
¢LicenseServer:
<LogFilePath> D:hdrawingss
¢ManDictionan> enu
¢MenuFiler DANACADZ000Nzupportsacad
£0bjectdRx=Path:
<PoztScriptPrologFile:
<PrintFile: .
£Print5 poolE xecutable:
<PrintSpoolerPath: CoAMIMDOWSATERMPY,
¢PrinterConfigPathx DANACAD2000%plotters
E <PrinterDezcPathy: D:AACADZ2000Mdry
<PrinterstyleSheetPath: DAACADZ000MPlat Styles
<SupportPath: DAACADZ00MSUPPORT D AACADZ2000MNFOMTS DM
<TempFilePathy C:WwWIKDOWSNTEMPY
<TempxrefPath: C:AWINDOWSATEMPY
<TemplatelwgPath: D:hdebeers-Cuztormh T emplates
£TewtEditor: Internal
¢ TexturetapPath: DAACADZ000N extures
SwforkzpacePath: D:AACADZ000MD ata Links

Compare this list with what you see when you open the Options-Files Dialog :

Files | Displa_l,ll Open and Savei F'Iu:uttingl Systemi [zer Preteren

Search pathz, file names, and file locations:

[+ =y Support File Search Path

-t! % Warking Support File Search Path
% Device Dinver File Search Path
~([B Project Files Search Path

tenu, Help, and Mizcellaneous File Mames

- !.i. ...|_.|_. -

-
i Jm o !

Tewxt Editor, Dictionary, and Font File Mames

Frint File, Spoaler, and Prolog Section Mames

I
L

[| Printer Support File Path

Search Path for ObjectdRx Applications
% Autornatic 5ave File Location

% Data Sources Location

% Drawing Template File Location

% Log File Location

% Tempaorary Drawing File Location

[+

|
L

% Temporary External Reference File Location
% Tewsture Mapz Search Path

Pretty much the same hey? On the next page we'll have a look at how we can access
these Objects programatically.

Before we start this section, | think it might be a good idea if you pop along and have a
look at the AutoCAD Object Model - You will find this on Page 3. In fact, print it out and
have it next to you as you work through these tutorials. It's just like having a road map.

Anyway, where were we? Oh, yes. We are now going to try and extract the AutoCAD
Support Path from the Object Model using VLisp. We'll take it right from the top justin
case you got a bit lost. Here we go. Type all of the following statements into the Console
window, pressing "Enter" after each one :

(The lines in red are what VLisp returns, don't type them!)

Load the VLisp support
_$ (vl-load-com)

Store areference to the Application Object
_$ (setq acadObject (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00adc088>

Store a reference to the Preferences Object
_$ (setq prefsObject (vlax-get-property acadObject 'Preferences))
#<VLA-OBJECT IAcadPreferences 018adfdc>

Store a reference to the Files Object
_$ (setq tabnameObject (vlax-get-property prefsObject 'Files))
#<VLA-OBJECT IAcadPreferencesFiles 018adfc0>

Get the Support Path

_$ (setq thePath (vlax-get-property tabnameObject 'SupportPath))
"D:\ACAD2000\SUPPORT;D:\\ACAD2000\\FONTS;
D:\\ACAD2000\HELP;D:\\ACAD2000\\EXPRESS"

"Jings, that's great, but can we add a new directory to our Support Path?"
Of course we can, but first we need to add our new path to the existing path variable.
What should we use? Easy, let's just use the (strcat) function :

_$ (setq thePath (strcat thePath ";" "C:\TEMP"))
"D:\ACAD2000\SUPPORT;D:\\ACAD2000\\FONTS;
D:\\ACAD2000\HELP;D:\\ACAD2000\\EXPRESS;C:\\TEMP"

We've added the new directory to the Support Path variable, so now let's update it.
Type in this line:

_$ (vlax-put-property tabnameObject 'SupportPath thePath)
nil

Now, return to AutoCAD and go to "Tools" - "Options" - "Files" - "Support Search Path".
Your new directory, C:/TEMP, should have been added to your Support Path. Dead easy
Hey? This Vlisp stuff is easy!!!

Right, we've opened the filing cabinet AutoCAD drawer (the Application Object) and had a
look at the characteristics of that drawer. Now we need to delve into the drawer and have
alook at one of the document folders stored inside.

_$ (vl-load-com)

_$ (setq acadObject (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00adc088>

Store areference to the Active Document. (the drawing you fool!)

_$ (setq acadDocument (vla-get-ActiveDocument acadObject))
#<VLA-OBJECT IAcadDocument 00ee0f84>

Double click to select the variable "acadDocument” and add it to the "Watch" Window :

Ul wWatch .‘.'Q'_;' e)
¢ (] 2400

Now double click on "ACADDOCUMENT" Object.

UL Inspect: WLA-DBJECT . i e e

| HVLA-OBJECT lAcadDocurent DDEEDFEd}

<hotiver vlan-tue -
¢hctivelimStyler HNLA-OBJECT lacadDimStyle 018asf7d: (1
¢hctivelaper: HOVLA-OBJECT lacadlLayer 018aed24:

¢hctivelapout: HOLA-0BJECT lAcadlayout 01 8asald:

<hctivelinetype: #<VLA-OBJECT lacadlineTvpe 018aehbd:
hctivePViewport: Autamation Eror. Mo active viewport in paperspace
<hctiveSelectionSet: HVLA-OBJECT lAcadSelectionSet 018ae344:
¢hctiveSpacer 1

<hctiveT extStle: BOLAOBJIECT lAcadT extSiule 018ae1 44
<hctivellCS: #HAOVLA-OBJECT lAcaddCS 018adceds

<hctiveviewport: $<YLA-OBJECT lacadyiewport 018adabd:
<opplication: #OLA-0BJECT lAcaddpplication 00adc023:

<Blocksz> #<WLA-OBJECT lAcadBlocks 018adbdd:

¢<Databazer #NLA-OBJECT lAcadDatabaze 018ad634:

<Dictionarnies: H<NWLA-OBJECT lAcadDictionaries 018ad1 o4

<OimStles: HNLA-OBJECT lacadDimStples 078affhd:
¢ElervationtodelSpace: 0.0
<ElevationPaperSpace: 0.0

<FullMame:

<Groupsr HOVLA-OBJECT lAcadGroups 018afcid:
sHwMD> 3468

¢Height> 428

<Layersr H<WLA-OBJECT lacadlayers 018afbiDd:
<Layoutzx HNLA-OBJECT lAcadLapouts 018af8ad:
<Limits> H<variant 8137

¢Linetypes: HNVLA-OBJECT lAcadlineT ypes 0183af6bd:

¢MSpacer Automation Ermar. [hvalid mode

¢ModelSpacer #<VLA-OBJECT lAcadiodelSpace 018af3ed: j

Wow, look at all that! Now double click on <Layers>:

Ul Inspect: ¥LA-OBJECT " x|
O LA-OBJECT lAcadlayers 01 Bafbﬂ-‘b

sopplication: #OLA-OBJECT |Acaddpplicat
<Count> 12

<Document: #<VLA-DBJECT lacadDocume
¢Handlex 2

¢HazE stenzionDictionary: wlas-falze
<0bjectlD> 21871632

<0Objecttame: AcDbLaperT able
OwnerlD: 0

Ha, we've now drilled down to all the layers contained in the drawing. In other words, the
"Layers Collection".

"Alright, that's great,” | can hear you say, "l can see that there are 13 layers in this
drawing, but where are the layers? Right enter this :

_$ (vl-load-com)

_$ (setq acadDocument (vla-get-activedocument (vlax-get-acad-object)))
#<VLA-OBJECT IAcadDocument 00ee0f84>

_$ (setq theLayers (vla-get-layers acadDocument))
#<VLA-OBJECT IAcadLayers 018aee84>

We are now proud owners of all the layers in this particular drawing. Would you like to
have a wee look at them? Just be very careful and don't drop them!

Enter the following at the Console prompt, pressing "Ctrl" then "Enter" after each line.
After the final line, the closing parenthesis, press "Enter" :

_$(setqi0)

(repeat (vla-get-count theLayers)
(setg aLayer (vla-item theLayers i))
(princ (vla-get-name alLayer))
(terpri)

(setqi (1+1))

)

All the layer names in your drawing should be listed. Mine looks like this :

O©CoOoO~NOOUIlA~WNPEFO

10
12
DEFPOINTS

Would you like to have a closer look at one of the layers in your drawing? Then type this :

(setg aLayer (vla-item theLayers "2"))
#<VLA-OBJECT IAcadLayer 018aeec4>

We have now accessed Layer "2" from the Layers Collection. Let's list all the properties
and methods of this Layer :

_$ (vlax-dump-object aLayer T)

; IAcadLayer: A logical grouping of data, similar to transparent acetate overlays on a drawing
: Property values:

; Application (RO) = #<VLA-OBJECT IAcadApplication 00adc088>
; Color =2

; Document (RO) = #<VLA-OBJECT IAcadDocument 00ee0f84>

; Freeze =0

; Handle (RO) ="40"

; HasExtensionDictionary (RO) =0

; LayerOn = -1

; Linetype = "DASHED2"

; Lineweight = -3

; Lock =0

; Name ="2"

; ObjectID (RO) = 21872128

; ObjectName (RO) = "AcDbLayerTableRecord"
; OwnerID (RO) = 21871632

; PlotStyleName ="Color_511"
; Plottable = -1

; ViewportDefault = 0

; Methods supported:

; Delete ()

; GetExtensionDictionary ()

; GetXData (3)

; SetXData (2)

-~

Want to change your Layers color? Enter this :

_$ (vla-put-color aLayer 4)
nil

This will have changed your Layer "2" color to "Cyan" or color "4", including the color of
all Objects within the drawing on Layer "2" with color "ByLayer".

Have a look around at the Document Object. There's stacks to see and drool over. Can
you now see the power and capabilities of Visual Lisp?

Next we'll go even deeper and start to have a look at creating, selecting and changing
drawing entities.

Before we can create entities, or Objects, within AutoCAD, we need to decide "where" we
want to draw, Model Space or Paper Space. And to do that we need to create a reference
to the area in which we would like to draw.

Remember our filing cabinet? The Application Object was our drawer, the Document
Object was our folder, and now the Model Space Object will be our piece of paper. Let's
have a look at the Model Space Object :

_$ (setqg modelSpace (vla-get-ModelSpace (vla-get-ActiveDocument (vlax-get-Acad-Object))))
#<VLA-OBJECT IAcadModelSpace 018ade24>

Now run a dump on the modelSpace Object :

_$ (vlax-dump-object modelSpace T)

; IAcadModelSpace: A special Block object containing all model space entities
; Property values:

; Application (RO) = #<VLA-OBJECT IAcadApplication 00adc088>
; Count (RO)=0

; Document (RO) = #<VLA-OBJECT IAcadDocument 00ee0f84>
; Handle (RO) ="18"

; HasExtensionDictionary (RO) =0

; IsLayout (RO) =-1

; IsXRef (RO) =0

; Layout (RO) = #<VLA-OBJECT IAcadLayout 018ad934>
; Name = "*MODEL_SPACE"

; ObjectID (RO) = 21871808

; ObjectName (RO) = "AcDbBlockTableRecord"

; Origin = (0.0 0.0 0.0)

; OwnerID (RO) = 21871624

; XRefDatabase (RO) = AutoCAD.Application: No database
; Methods supported:

; Add3DFace (4)

; Add3DMesh (3)

; Add3DPoly (1)

; AddArc (4)

; AddAttribute (6)

; AddBox (4)

; AddCircle (2)

; AddCone (3)

; AddCustomObject (1)

; AddCylinder (3)

; AddDim3PointAngular (4)

; AddDimAligned (3)

; AddDimAngular (4)

; AddDimDiametric (3)

; AddDimOrdinate (3)

; AddDimRadial (3)

; AddDimRotated (4)

; AddEllipse (3)

; AddEllipticalCone (4)

; AddEllipticalCylinder (4)

; AddExtrudedSolid (3)

; AddExtrudedSolidAlongPath (2)

; AddHatch (3)

; AddLeader (3)

; AddLightWeightPolyline (1)

; AddLine (2)

; AddMinsertBlock (10)
; AddMLine (1)

; AddMText (3)

; AddPoint (1)

; AddPolyfaceMesh (2)
; AddPolyline (1)

; AddRaster (4)

; AddRay (2)

; AddRegion (1)

; AddRevolvedSolid (4)
; AddShape (4)

; AddSolid (4)

; AddSphere (2)

; AddSpline (3)

; AddText (3)

; AddTolerance (3)

; AddTorus (3)

; AddTrace (1)

; AddWedge (4)

; AddXline (2)

; AttachExternalReference (8)
; Bind (1)

; Delete ()

; Detach ()

; GetExtensionDictionary ()
; GetXData (3)

; InsertBlock (6)

; Item (1)

; Reload ()

; SetXData (2)

; Unload ()

-~

Interesting hey? Now let's draw something. Enter this coding :

(setq ptl (getpoint "\nSpecify First Point : "))

(while (setq pt2 (getpoint "\nSpecify next point : " ptl))
(vla-addline modelSpace (vlax-3d-point ptl) (vlax-3d-point pt2))
(setq ptl pt2)

)

(428.748 578.851 0.0)

(524.783 509.712 0.0)

At last, we've finally drawn something. Now type this :

_$ (setq ptl (getpoint "\nSpecify First Point : "))

(setq pt2 (getpoint "\nSpecify next point : " ptl))

(setg ourLine (vla-addline modelSpace (vlax-3d-point ptl) (vlax-3d-point pt2)))
(922.321 585.542 0.0)

(1016.12 300.064 0.0)

#<VLA-OBJECT IAcadLine 018ab094>

Did you notice the (setq ourLine statement? This sets a reference to our Line Object. Let's
run adump on that :

_$ (vlax-dump-object ourLine T)

; IAcadLine: AutoCAD Line Interface
; Property values:

; Angle (RO) = 5.02985

; Application (RO) = #<VLA-OBJECT IAcadApplication 00adc088>
: Color = 256

; Delta (RO) = (93.8012 -285.479 0.0)
; Document (RO) = #<VLA-OBJECT IAcadDocument 00ee0f84>
; EndPoint = (1016.12 300.064 0.0)

; Handle (RO) = "95D"

; HasExtensionDictionary (RO) =0

; Hyperlinks (RO) = #<VLA-OBJECT IAcadHyperlinks 018aa2b4>
; Layer ="7"

; Length (RO) = 300.494

; Linetype ="BYLAYER"

; LinetypeScale = 1.0

; Lineweight = -1

; Normal = (0.0 0.0 1.0)

; ObjectID (RO) = 21873192

; ObjectName (RO) ="AcDbLine"

; OwnerID (RO) = 21871808

; PlotStyleName ="ByLayer"

; StartPoint = (922.321 585.542 0.0)
; Thickness = 0.0

: Visible = -1

; Methods supported:

; ArrayPolar (3)

; ArrayRectangular (6)

; Copy ()

; Delete ()

; GetBoundingBox (2)

; GetExtensionDictionary ()

; GetXData (3)

; Highlight (1)

; IntersectWith (2)

; Mirror (2)

; Mirror3D (3)

; Move (2)

; Offset (1)

; Rotate (2)

; Rotate3D (3)

; ScaleEntity (2)

; SetXData (2)

; TransformBy (1)

; Update ()

-~

We now have a list of all the Properties and Methods of our Line Object. Let's change
some of it's properties :

Let's change it's Layer:
_$ (vla-put-layer ourLine 2)
nil

And now it's color :

_$ (vla-put-color ourLine 6)
nil

Let's delete our line :

_$% (entdel (vlax-vla-object->ename ourLine))
<Entity name: 14dc1f8>

Did you notice how we used a standard AutoLisp command (entdel) to delete the line?
But before we could do that, we had to convert the VLisp Object Reference to an AutoLisp
Entity Name.

You are probably wondering why we don't just use the AutoLisp (command) function to
draw or change entities. If you use reactor call-back functions, you are not allowed to use
the (command) function.

Well, | hope this has given you an insight into the use of Visual Lisp? Don't worry, we'll be
looking a lot closer at all aspects of Visual Lisp in future Tutorials. This is just to get you
started and give you a taste of what's to come.

Viewing AutoCAD Objects

Visual Lisp has a great way of letting you view AutoCAD Objects by allowing you to
"walk" through the drawing database. Let's have a wee look at what's on offer. Open
AutoCAD with a blank drawing, and then open the Visual Lisp Editor. Let's set up what
information we would like to see first :

Il Choose "Tools" - "Environment Options" - "General Options".

[Click the "Diagnostic tab" in the "General Options" window.

I Select "Inspect Drawing Objects Verbosely to view detailed entity information.
Bl Now choose "View" - "Browse Drawing Database" - "Browse Tables".

The "Drawing Tables" Inspection window will now open :

'I-___JJ;DHA.WIHE TABLES = EI
|;; Drawing tables menu

e ﬁjrts}

<LineTypes: ...

<Layerss .

Shless .

Slewer L

<Dimenzion Styles: .

¢Ulzer Coordinate Systems: ...
chpplicationg: ...

That's very nice!! We have a list of the symbol tables in our drawing.
Now, double-click on <Layers> :

ULAUTOCAD LAYERS

| s Lavers

<
' .
<10
L8 L
<3
dr oL
<Br oL
o
fr o
<8
<9
<DEFPOIMTS: ...

Even better! Now we've got a list of all the Layers in our drawing.
Double-click on Layer <2>:

{raw-datar [0, "LAYER'[2 . "2"] (70 . O] [62 . 2] (6. "DASHED 2"
{name} "'2"

{color} 2

Laver iz OM and Thawed

Crikey, now we've got a list of all the Layers attributes "including” the AutoLisp Entity
list!!!

Now draw a line, a circle, and some text anywhere in your drawing and then select "View" -
"Browse Drawing Database" - "Browse All Entities". The following Inspect window will
open :

L AUTOCAD ENTITIES
|;; AutaCAD Entities list

E{EIHELE} {Entit',' name; 14db1f8:
<LIME> <Entity name: 14db200:
<TE=T> <Entity name: 14db208:

Now double-click on <TEXT>:

thandle} "'959"
{LAYER..} "B"
{extruzion direction) [0.0 0.0 1.0)

{string} "AFRALISP"

{style} "debeers"

{inzertion} (504,652 306.755 0.0)
{alignment point} (0.0 0.0 0.0]
fheight} 3.5

{relative =-zcale} 1.0

{rotation angle} 0.0

{oblique angle} 0.03726E5
{adjustment} Left

Now we've got a list of all the text attributes.

Just one more so that you get the idea. This time choose "View" - "Browse Drawing
Database" - "Browse Selection". The AutoCAD window will appear prompting you to
select objects. Do just that :

UL Inspect: PICKSET. 5 Aty
|{Selectinn zel: 4

[EI] <CIRCLE> <Entity name: 14db1f3:
1] <TE#T > <Entity name: 14db203:
2] <LIME = <Entity name; 14db200:

A list of all entities contained in your selection set will be displayed. This time double-
click on the <Line> object :

(| ACAD LINE B x|
|{Entitl,l name: 14db200:
{thandle} '"958"

{extruzion directiony [0.0 0.0 1.0)

{start point} [714.618 632,373 0.0
{end point} [1009.42 366.973 0.0]

Again a list of the Objects attributes are displayed.

Insert a few more Objects into your drawing such as blocks, blocks with attributes,
polylines, hatches,etc.

This set of tools gives you a good idea of how the AutoCAD Object Model is put together.
Play around the them, you'll learn a lot

Properties and Methods

The aim of this tutorial is not to describe the Properties and Methods of every AutoCAD
Object, but rather to show you, first how to find the Properties and Methods available for an
Object, and secondly to describe the usage of such Property or Method within Visual Lisp.
Each Object within AutoCAD has numerous Properties and Methods which differ from Object
to Object. To attempt to list each Property or Method for each Object is way beyond the scope
of this tutorial.

First of all, let's have a look at defining a Property and a Method.

Visual Lisp Objects support properties and methods, In Visual Lisp, an Object's data (settings
or attributes) are called 'properties’, while the various procedures that can operate on an
Object are called it's 'methods'.

You can change an Object's characteristics by changing it's properties.
Consider aradio: One property of aradio is its volume. In Visual Lisp,

you might say that a radio has a 'Volume' property that you can adjust by
changing its value. Assume you can set the volume of a radio from 0 to 10.
If you could control a radio with Visual Lisp, you might write code in a
procedure that changes the value of the 'Volume' property from 3to 5to
make it play louder :

(vla-put-Volume Radio 5)

In addition to properties, objects have methods. Methods are part of objects

just as properties are. Generally, methods are actions you want to perform,

while properties are the attributes you set or retrieve. For example, you dial

a telephone to make a call. You might say that telephones have a 'Dial' method, and you could
use this syntax to dial a seven digit number 3334444

(vla-Dial Telephone 3334444)

Properties
Angle
Application
Color
Documett
Delta
EndFPoint
Handle

HazE =tenzionDichionary

Huperlink.s
Laver

Length
Linetype
Linetypescale
Lineweight

MHarmal

Object D
Ovarerl D
FlotStylet ame
StartPoint

Thickness

_$ (vl-1load-com

Before you can start to change an Objects Properties or Methods, you
need to know what Properties and Methods are available to the
particular Object. There are a couple of ways of going about this. First
we'll look at Properties.

Under AutoCAD Help, open "Visual Lisp and AutoLisp" and then
"ActiveX and VBA Reference". Choose the "Objects" sub-section and
from the list choose the Object whose Properties you would like list.
Choose "Line".

As you can see, all the Properties applicable to the "Line" Object are
listed.

Be careful though, as some of these Properties are "Read Only" and
cannot be changed.

e.g. The "Angle" property is "Read Only." Think about it, if you
changed the "ANGLE" Property, the Start or End point of the Line
Object would have to change as well.

Click on any of the Property hyperlinks for further information.

Another way of finding an Objects properties is to use the Visual Lisp
function (vlax-dump-object).

Open AutoCAD and then the Visual Lisp editor and type the following
at the Console prompt :

~$ (setq acadDocunent (vl a-get-activedocunment (vl ax-get-acad-object)))
#<VLA- OBJECT | AcadDocunent 00b94el4>

_$ (setq nspace (vl a-get-nodel space acadDocunent))
#<VLA- OBJECT | AcadMbdel Space 01e42494>

_$ (setqg apt (getpoint

"Specify First Point: "))

(228.279 430.843 0.0)

_$ (setqg pt (getpoint

"Specify next point: " apt))

(503. 866 538.358 0.0)

_ % (setq nyline (vla-addline nspace (vl ax-3d-point apt) (vl ax-3d-poi nt

pt)))

#<VLA- OBJECT | AcadLi ne 01e84614>

_$ (vl ax-dunp-object nyline)

. | AcadLi ne: Aut oCAD Line Interface

; Property val ues:

; Angle (RO = 0.371971

; Application (RO = #<VLA-OBJECT | AcadApplication 00adc088>
; Col or = 256

; Delta (RO = (275.587 107.515 0.0)

; Docunent (RO = #<VLA- OBJECT | AcadDocunent 00b94el4>

EndPoi nt
Handl e (RO

= (503. 866 538.358 0.0)
= " 958"

HasExt ensi onDictionary (RO = 0

Hyperli nks (RO

Layer = "7"
Length (RO
Li netype =

Li netypeScal e =

Li newei ght
Nor mal

St ar t Poi nt
Thi ckness
Visible =

= #<VLA- OBJECT | AcadHyperli nks 01e84564>

= 295. 817
" BYLAYER'

1.0
-1

= (0.0 0.0 1.0
hjectI D (RO =
bj ect Nane (RO =
Owner | D (RO
Pl ot Styl eNane =

25187840

" AcDbLi ne"

= 25186496

"ByLayer"

(228.279 430.843 0.0)

= 0.0
-1

The (vlax-dump object) function lists all the available properties for a particular Object.

Note the (RO) after some of the Properties. This tells you that this Property is "Read Only".

Methods

ArrayPolar
ArrayRectangular
Copy

Delete

GetBoundingB o

GetE stenzionDictionary
Get=0ata

Highlight

[ntersectaith

Mirror
MiroraD
Move
Offset
Fotate

RHotate3D

Scalek ity
Set<D ata

TranstarmBy
pdate

_$ (setqg pt2 (getpoint

Let's have alook at the Methods pertaining to an Object.

Under AutoCAD help, open "Visual Lisp and AutoLisp" and then "ActiveX
and VBA Reference". Again, choose the "Objects" sub-section and from
the list choose the Object whose Methods you would like list. Choose
"Line".

As you can see, all the Methods applicable to the "Line" Object are listed.

Click on the "Move" method.
The VBA Method for "Move" is displayed and the syntax is as follows :

object.Move Pointl, Point2

Object : All Drawing Objects, AttributeRef. The object or objects this method applies
to.

Pointl : Variant (three-element array of doubles); input-only. The 3D WCS coordinates
specifying the first point of the move vector.

Point2 : Variant (three-element array of doubles); input-only. The 3D WCS coordinates
specifying the second point of the move vector.

Let's move the line we've just drawn :

_$ (setq apt2 (getpoint "Specify Base Point:
(220.911 526.575 0.0)

"))

"Specify second point: " apt2))

(383.02 617.889 0.0)

_$ (vla-nmove nyline (vlax-3d-point apt2)(vlax-3d-point pt2))

Now let's "dump" the Object, but this time we'll use the "T" flag to display the Objects
Methods as well as it's Properties.

_$ (vl ax-dunp-object nmyline T)

;| AcadLi ne: Aut oCAD Line Interface

; Property val ues:

; Angle (RO = 5.60729

; Application (RO = #<VLA- OBJECT | AcadApplicati on 00adc088>
; Col or = 256

; Delta (RO = (246.112 -197.356 0.0)
; Docunent (RO = #<VLA- OBJECT | AcadDocunent 00b94el4>
; EndPoi nt = (629. 133 420.533 0.0)
; Handl e (RO = "957"

; HasExt ensi onDictionary (RO = 0

; Hyperlinks (RO = #<VLA- OBJECT | AcadHyperlinks 01e84574>
: Layer = "7"

; Length (RO = 315. 469

; Li netype = "BYLAYER'

; Li netypeScale = 1.0

: Li newei ght = -1

; Normal = (0.0 0.0 1.0)

; ojectI D (RO = 25187832

; bj ect Nanme (RO = "AcDbLi ne"

; Owmer|I D (RO = 25186496

; Pl ot Styl eNane = "ByLayer"

; StartPoint = (383.02 617.889 0.0)
: Thi ckness = 0.0

X Visible = -1

; Met hods support ed:

; ArrayPol ar (3)

; ArrayRect angul ar (6)

, Copy ()

; Delete ()

; Get Boundi ngBox (2)

; Get Extensi onDi ctionary ()

; Get XDat a (3)

; H ghlight (1)

; Intersect Wth (2)

; Mrror (2)

; M rror3D (3)

; Move (2)

; Ofset (1)

; Rotate (2)

; Rot at e3D (3)

; Scal eEntity (2)

; Set XData (2)

; TransfornBy (1)

; Update ()

"But, the syntax of the "Move" method you used in Visual Lisp, is different from the VBA
syntax!! How do | know how to call the function in Visual Lisp?"

Don't worry, we'll be having a look at that on the next page.

Before we go there, here's a little application that will dump all Properties and Methods for
selected Objects :

;coding starts here
(defun C:HaveaDump (/ ent)
(vl-load-com)
(while
(setq ent (entsel))
(vlax-dump-object (vlax-Ename->Vla-Object (car ent)) T)
);while
(princ)
);defun
(princ)
;coding ends here

On the next page we'll have a look at how we call Property and Method Functions. See you

How to Call a Visual Lisp Function

Right, you've identified the Visual Lisp Property or Method that you need, but you still
need to determine how to call the function. You need to know the arguments to specify
and the data type of those arguments.

Let's look at Properties first.

The syntax for the Layer Property in VBA is as follows :

object.Layer or object.property

object : All Drawing objects, AttributeRef, Group. The object or objects this property applies to.
Layer : String; read-write (write-only for the Group object). The name of the layer.

Remarks

All entities have an associated layer. The document always contains at least one layer (layer 0). As with
linetypes, you can specify a layer for an entity. If you don’t specify a layer, the current active layer is
used for a new entity. If a layer is specified for an entity, the current active layer is ignored. Use the
ActiveLayer property to set or query the current active layer.

Each layer has associated properties that can be set and queried through the Layer object.

In VBA you would use

Oldlayer = object.Layer to retrieve the Layer Name, and

object.Layer ="2" to change the Layer Name.
|

Visual Lisp provides functions for reading and updating Object Properties.
Functions that read Object Properties are named with a vla-get prefix and require the
following syntax :

(vla-get-property object)
For example, "vla-get-layer object" returns the Layer the Object is on.
Enter this in the Visual Lisp Console :

_$ (vl-load-com)

_$ (setq acadDocument (vla-get-activedocument (vlax-get-acad-object)))
#<VLA-OBJECT IAcadDocument 00b94el14>

_$ (setq mspace (vla-get-modelspace acadDocument))
#<VLA-OBJECT IAcadModelSpace 01e42444>

_$ (setqg apt (getpoint "Specify First Point: "))
(307.86 539.809 0.0)

_$ (setq pt (getpoint "Specify next point: " apt))

(738.188 479.426 0.0)

_$ (setq myline (vla-addline mspace (vlax-3d-point apt)(vlax-3d-point pt)))
#<VLA-OBJECT IAcadLine 01e81de4>

_$ (setq oldlayer (vla-get-layer myline))
g

The variable "oldLayer" now contains the Layer name of your Line Object.
|

Functions that update Properties are prefixed with vla-put and use the following syntax :
(vla-put-property object new-value)

For example, "vla-put-layer object new-value" changes the layer of the Object.

Enter this at the Console prompt :

_$ (vla-put-layer myline "4")
nil

Your line will have now changed to Layer "4".
|

Let's have a look at Methods now.
The syntax for the "Offset" Method in VBA is as follows :

RetVal = object.Offset(Distance) or Return Value = object.Method (arguments)

Object : Arc, Circle, Ellipse, Line, LightweightPolyline, Polyline, Spline, XLine. The object or objects this
method applies to.

Distance : Double; input-only. The distance to offset the object. The offset can be a positive or negative
number, but it cannot equal zero. If the offset is negative, this is interpreted as being an offset to make a
"smaller" curve (that is, for an arc it would offset to a radius that is "Distance less" than the starting
curve's radius). If "smaller” has no meaning, then it would offset in the direction of smaller X, Y, and Z
WCS coordinates.

RetVal : Variant (array of objects). An array of the newly created objects resulting from the offset.
In VBA you would use

offsetObj = object.offset(15.5) to Offset an Object.
|

The syntax definitions used in the "ActiveX and VBA Reference" were designed for Visual
Basic Users. Consider the VBA Offset Method :

returnvalue = object.Method (arguments)

returnvalue = object.Offset(Distance) or using the names in our example

offLine = myline.Offset(15.5)
The syntax for the same operation in Visual Lisp is :

(setq returnvalue (vla-method object argument)) Or using our names

(setq offLine (vla-offset myline 15.5))
Different Objects have different Methods but the same principle applies.
Type this at the Console prompt :

_$ (setq offLine (vla-offset myline 15.5))
#<variant 8201 ...>

The variable "offLine", now contains the data for your newly created line in the form of a
variant array.

Sotorecap :

B Vvla-get- functions correspond to every ActiveX Property, enabling you to retrieve the value
of that Property (for example, vla-get-Color obtains an Object's Color Property.

B Vvla-put- functions correspond to every Property, enabling you to update the value of the
Property (for example, vla-put-Color updates an Objects Color Property.

Bl Vla- functions correspond to every ActiveX Method. Use these functions to invoke the
Method (for example, vla-addCircle invokes the addCircle Method.

Visual Lisp also adds a set of ActiveX-related functions whose names are prefixed with
vlax-. These are more general ActiveX functions, each of which can be applied to
numerous Methods, Properties or Objects. For example, with the vlax-get-property
function, you can obtain any Property of any ActiveX Object.

On the next page we'll have a look at how we can determine whether an Object is
available for updating and whether a Method or a Property applies to an Object.

Determining Whether an Object is Available for Updating

If other applications are working with any AutoCAD Objects at the same time as your
program, those Objects may not be accessible. This is especially important to lookout for
if your application includes reactors, because reactors execute code segments in
response to external events that cannot be predicted in advance. Even a simple thing
such as alocked Layer can prevent you from changing an Objects Properties.

Visual Lisp provides the following functions to test the accessibility of an Object before
trying to use the Object :

B Vviax-read-enabled-p Tests whether you can read an Object.

B Vviax-write-enabled-p Determines whether you can modify an Objects Properties.

B Vviax-erased-p Checks to see if an Object has been erased. Erased Objects may still exist
in the drawing database.

All these test functions return T if true, and nil if false.
Let's test them out. Draw a line anywhere in AutoCAD then enter this at the Console
prompt :

_$ (vl-load-com)

_$ (setq ent (entsel))
(<Entity name: 17e39f8> (434.601 389.588 0.0))

_$ (setq myLine (vlax-Ename->Vla-Object (car ent)))
#<VLA-OBJECT IAcadLine 01e81f84>

Determine whether the line is readable :

_$ (vlax-read-enabled-p myLine)
T

Determine whether the line is modifiable :

_$ (vlax-write-enabled-p myLine)
7

See if the line has been erased :

_$ (vlax-erased-p myLine)
nil

Erase the line :

_$ (vla-delete myLine)
nil

See if the line is still readable :

_$ (vlax-read-enabled-p myLine)
nil

Check to confirm that the object has been deleted :

_$ (vlax-erased-p myLine)
=

Determining If a Method or Property Applies to an Object

Trying to use a Method that does not apply to a specified Object will result in an error.
The same goes for trying to reference a Property that does not apply to an Object. This
will also result in an error. In instances where you are not sure what applies, use the vilax-
method-applicable-p and the vlax-property-available-p functions.

These functions return T if the Method or Property is available for the Object, and nil if
not.

The syntax for vlax-method-applicable-p is :
(vlax-method-applicable-p object method)
The following command checks to see if the "Copy" Method can be applied to an Object :

_$ (vlax-method-applicable-p myLine "Copy")
=

The following command determines if the "addBox" Method can be applied to an Object :

_$ (vlax-method-applicable-p myLine "addBox")
nil

For vlax-property-available-p the syntax is :
(vlax-property-available-p object property [T])

The following commands determine if Color and Center are properties of the myLine
Object :

(vlax-property-available-p myLine "Color")
-

(vlax-property-available-p myLine "Center")
nil

Supplying the optional "T" argument to vlax-property-available-p changes the meaning of
the test. If you supply this argument, the function returns T only if the Object has the
Property AND the Property can be modified. If the Object has no such Property or the
Property is Read-Only, vlax-property-available-p returns nil.

For example, a Circle contains an Area Property, but you cannot update it.
If you check the Property without specifying the optional argument the result is T.

(vlax-property-available-p myCircle "area")
T

If you supply the optional argument, the result is nil :

(vlax-property-available-p myCircle "area" T)
nil

Well, that's it with Methods and Properties. Time for me to pour myself a nice long, cold
beer and retire to the garden and sit in the sun. The advantages of living in Africa. Eat
your heart out............

Oh, by the way, my Mum has got a great Method of cooking Tripe and Onion's if anybody
Is interested!!

Arrays

If you've programmed in VBA or other languages, you're probably familiar with the
concept of arrays. An array is a named collection of variables of the same data type. Each
array element can be distinguished from other elements by one or more integer indexes.
For example, if the "sheetNames" array contains three names, you can set and return the
names in VBA as shown in the following example :

sheetNames(0) = "Sheet1"
sheetNames(1) = "Sheet2"
sheetNames(2) = "Sheet3"

MsgBox sheetNames(1)
Would return a message :

"Sheet2"

Arrays allow you to group related variables in a way that makes it easier for you to keep
track of, access, and manipulate them all at once, while still being able to access each
variable individually. This helps you create smaller and simpler routines in many
situations, because you can set up loops using index numbers to deal efficiently with any
number of cases.

When you create an array, its size is determined by the number of dimensions it has and
the by the upper and lower bounds for the index numbers in each dimension. The
"sheetNames" array in the earlier example has one dimension and three elements; the
lower bound is 0 and the upper bound is 2.

"That's fine Kenny, but how do we create an Array in Visual Lisp?"
O.K. I hear you, there's no need to yell!
Enter this at the Console prompt :

_$ (vl-load-com)

_$ (setq sheet_type (vlax-make-safearray vlax-vbString '(0 . 2)))
#<safearray...>

_$ (vlax-safearray-fill sheet_type '("Sheetl" "Sheet2" "Sheet3"))
#<safearray...>

Have a look at the "sheet_ type" variable in the Watch window :

I'.__:'l,jilnspnf:c:t: zafearray i
[#<sateanay. > i
< Topes Shing i
<Mumber of Dimensions: 1 i
£Waluer [Sheet] Sheet? Sheet3) |

This tells us that the Array contains strings, has one dimension and contains 3 elements.
Let's convert it to an AutoLisp List:

_$ (setq alist (vlax-safearray->list sheet_type))
("Sheetl" "Sheet2" "Sheet3")

Did a light just go off in your head? An Array is just a List in a slightly different format. To
create an Array, or safearray as they are know in Visual Lisp, we use the "vlax-make-
safearray” function. To populate a safearray we use the "vlax-safearray-fill" or the "vlax-
safearray-put" functions.

The "vlax-make-safearray" function requires a minimum of two arguments. The first
argument identifies the type of data that will be stored in the array.
One of the following constants must be specified for the data type :

vlax-vbinteger Integer

vlax-vbLong Long Integer

vlax-vbSingle Single-precision floating point number
vlax-vbDouble Double-precision floating point number
vlax-vbString String

vlax-vbObject Object

vlax-vbBoolean Boolean

vlax-vbVariant Variant

The remaining arguments to "vlax-make-safearray" specify the upper and lower bounds
of each dimension of the array. The lower bound for an index can be zero or any positive
or negative number. Have another look at the function we called earlier :

_$ (setq sheet_type (vlax-make-safearray vlax-vbString '(0 . 2)))

This function created a single-dimension array consisting of three strings with a starting
index of O (element 0, element 1 and element 2).

Consider this :

_$ (setq ptl (vlax-make-safearray vlax-vbDouble '(1 . 3)))

The lower bound specified in this example is one and the upper bound specified is three,

so the array will hold three doubles (element 1, element 2 and element 3).
|

The "vla-safearray-fill" function requires two arguments: the variable containing the array
you are populating and a list of the values to be assigned to the array elements. You must
specify as many values as there are elements in the array or vla-safearray-fill" results in
an error.

The following code populates a single-dimension array of three doubles:

_$ (vlax-safearray-fill pt1 ‘(100 100 0))

To convert an array to an AutoLisp list, you can use the (vlax-safearray->list) function. Try
it out :

_$ (vlax-safearray->list ptl)
(100.0 100.0 0.0)

Let's create a Array with two dimensions, each dimension with three elements:

_$ (setq two_dim (vlax-make-safearray vlax-vbString ‘(0. 1) '(1 . 3)))
#<safearray...>

_$ (vlax-safearray-fill two_dim '(("Sheet1" "Sheet2" "Sheet3") ("a" "b" "c")))
#<safearray...>

_$ (vlax-safearray->list two_dim)
(("Sheetl" "Sheet2" "Sheet3") ("a" "b" "c"))

This is just a list of lists.
The first list, '(0 .1) is the number of dimensions.
The second list, '(1 . 3) is the number of elements

And now a three dimensional Array with two elements in each dimension:

_$ (setq three_dim (vlax-make-safearray vlax-vbString ‘(0. 2) '(1 . 2)))
#i<safearray...>

_$ (vlax-safearray-fill three_dim '(("Sheetl" "Sheet2") ("a" "b") ("d" "e")))
#<safearray...>

_$ (vlax-safearray->list three_dim)
(("Sheetl" "Sheet2") ("a" "b") ("d" "e"))

Here we have a list of three lists.
This time, the first list '(0 . 2) defines three dimensions and the second '(1 . 2) defines 2
elements in each dimension.

One place you will be using "vlax-safearray-fill" is when creating selection sets with
filters. The syntax in ActiveX for "Selecting All with Filters" is as follows "

object.Select Mode[, Point1][, Point2][, Filter_Code][, Filter_Value]

Filter_Code must be an Integer array and Filter_Value a Variant array.
In Visual Lisp, the coding would be written like this :

;create a 2 element integer array for the DXF Codes.
(setq filter_code (vlax-make-safearray vlax-vbinteger '(0 . 1)))

;create a 2 element variant array for the values.
(setq filter_value (vlax-make-safearray vlax-vbvariant '(0 . 1)))

;DXF Codes for Objects and Layer : " 0" for Object,” 8" for Layer.
(vlax-safearray-fill filter_code '(0 8))

;Name of Object and Layer.
(vlax-safearray-fill filter_value '("CIRCLE" "2"))

;select ALL Circles on Layer 2.
(vla-select newsset acSelectionSetAll nil nil filter_code filter_value)

For more information on Selections Sets, pop along to the "Selection Sets" tutorial
section and get yourself even more confused.

The "vlax-safearray-put-element” function can be used to assign values to one or more
elements of a safearray. The number of arguments required by this function depends on
the number of dimensions in the array.

B The first argument always names the safearray to which you are assigning a value.

I The next set of arguments identifies index values pointing to the element to which you are
assigning a value. For a single-dimension array, specify one index value: for a two-
dimension array, specify two index values, and so on.

B The final argument is always the value to be assigned to the safearray element.

Have a look at the following :

_$ (setq ptl (vlax-make-safearray viax-vbDouble '(1 . 3)))
#<safearray...>

_$ (vlax-safearray-put-element pt1l 1 100)
100

_$ (vlax-safearray-put-element ptl 2 100)
100

_$ (vlax-safearray-put-element ptl 3 75)
75

_$ (vlax-safearray->list ptl)

(100.0 100.0 75.0)

_$ (vlax-safearray-put-element ptl 1 50)
50

_$ (vlax-safearray->list ptl)
(50.0 100.0 75.0)

|
Now let's populate a two-dimension array of strings :

_$ (setqg two_dim (vlax-make-safearray vlax-vbString '(0. 1) '(1 . 3)))
#i<safearray...>

_$ (vlax-safearray-put-element two_dim 0 1 "a")
e

$ (vlax-safearray->list two_dim)

(Car ey)

_$ (vlax-safearray-put-element two_dim 0 2 "b")
n bll

_$ (vlax-safearray-put-element two_dim 0 3 "c")
IICII

_$ (vlax-safearray-put-element two_dim 1 1"d")
lldll

_$ (vlax-safearray-put-element two_dim 1 2 "e")
n ell

_$ (vlax-safearray-put-element two_dim 1 3 "f")
n fll

_$ (vlax-safearray->list two_dim)
(("a" "b" "c") ("d" "e" ")

You can use "vlax-safearray-get-element” to get the value of any element in any array.
Here we'll use "vlax-safearray-get-element"” to retrieve the second element in the first
dimension of the array:

_$ (vlax-safearray-get-element matrix 1 2)
llbll

(vlax-safearray-get-lI-bound) returns the lower boundary (starting index) of a dimension of
an array :

Get the starting index value of the second dimension of the array:

_$ (vlax-safearray-get-I-bound two_dim 2)
1

The second dimension starts with index 1.

Conversley, "vlax-safearray-get-u-bound" returns the upper boundary (end index) of a
dimension of an array

Get the end index value of the second dimension of the array:

_$ (vlax-safearray-get-u-bound two_dim 2)
3

The second dimension ends with index 3.

You can use "vlax-safearray-get-dim" to get the number of dimensions in a safearray
object :

Get the number of dimensions in "two_dim":

_$ (vlax-safearray-get-dim two_dim)
2

There are 2 dimensions in "two_dim".
|
Let's have a look at putting some of this to good use:
(vl-load-com)
(defun c:Line_VL (/acApp acDoc mspace pl p2 sp ep lineObj)
(setq acApp (vlax-get-acad-object))
(setq acDoc (vla-get-activedocument acApp))
(setq mspace (vla-get-modelspace acDoc))
(setq p1l (getpoint "\nFirst Point : "))
(setq p2 (getpoint p1 "\nSecond Point : "))
(setq sp (vlax-make-safearray vlax-vbdouble '(0 . 2)))
(setq ep (vlax-make-safearray vlax-vbdouble ‘(0 . 2)))

(vlax-safearray-fill sp p1)

(vlax-safearray-fill ep p2)

(setq lineObj (vla-addline mspace sp ep))
(princ)
);defun
=

There is an easier way of writing this routine :

(vl-load-com)
(defun c:Line_VL (/acApp acDoc mspace pl p2 lineObj)
(setq acApp (vlax-get-acad-object))
(setq acDoc (vla-get-activedocument acApp))
(setqg mspace (vla-get-modelspace acDoc))
(setq p1l (getpoint "\nFirst Point : "))
(setqg p2 (getpoint p1 "\nSecond Point : "))
(setq lineObj (vla-addline mspace (vlax-3d-point p1) (vlax-3d-point p2)))
(princ)
);defun

For methods that require you to pass athree-element array of doubles (typically to
specify a point), you can use the "vlax-3d-point" function.

Well, that's it with Arrays. | haven't covered absolutely everything pertaining to Arrays,
but you should now have enough to get you started. | hope that you understood
everything | was warbling on about, and that | didn't confuse you too much!!!!

Adios for now, amigo........

Selection Objects

Selecting Objects and creating Selection Sets is much the same in Visual

Lisp as it is for standard AutoLisp except for two main differences. All Entities

contained in an AutoLisp selection set, must be converted to VLA Objects

before VLA functions can be applied to them, and you cannot use AutoCAD interactive functions
such as (entsel) or (ssget) within a reactor callback function.

In this tutorial, we we look at Selecting Objects and creating Selection sets using the (entsel)
function, the (ssget) function and then using only VLA functions.

Let's look at selecting a single entity first using (entsel).
Consider this coding :

(defun selectionlispl (/ sset check)

;load the visual lisp extensions
(vl-load-com)

:check for selection
(while

;get the entity and entity name
(setq sset (car (entsel)))

;convert to vl object
(setqg sset (vlax-ename->vla-object sset))

;check if the entity has a color property

;and it can be updated

(setq check (vlax-property-available-p sset "Color" T))
Aif it can

(if check

;change it's color
(vlax-put-property sset 'Color 4)

)iif
):while

(princ)
);defun

(princ)

We select the entity using the standard (entsel) function. We then have to
convert the entity to a VLA Object by using the (vlax-ename->vla-object)
function.

Next we check to see if the object first has a color property, and secondly
is updateable using the (vlax-property-available-p) function with it's " T"
argument set.

Finally we change it's color property using the (vlax-put-property) function.
Dead easy, hey?

Create Selection sets utilising (ssget) is also quite straightforward.
Have a look at this :

(defun selectionlisp2 (/ sset item ctr check)

;load the visual lisp extensions
(vl-load-com)

:check for selection
(while

;get the selection set
(setqg sset (ssget))

;set up the counter
(setq ctr 0)

;count the number of entities and loop
(repeat (sslength sset)

;extract the entity name
(setq item (ssname sset ctr))

;convert to vl object
(setq item (vlax-ename->vla-object item))

;check if the entity has a color property
;and it can be updated
(setq check (vlax-property-available-p item "Color" T))

Af it can
(if check

;change it's color
(vlax-put-property item 'Color 6)

)iif

;increment the counter
(setq ctr (1+ ctr))

);repeat
);while
(princ)
);defun

(princ)

The only difference here, is that we need to loop through each individual
item in the selection set, converting it to a VLA Object, and then checking
and changing it's properties.

Again this is standard AutoLisp with a little bit of VLA thrown in to confuse
you.

To create a selection set using only VLA is a slightly different matter.
Here we need to access the Object Model to reference, create and
store our selection set. Have a look at this :

(defun selectionvl (/ ssets acadDocument newsset ctr item)

;load the visual lisp extensions
(vl-load-com)

;retrieve a reference to the documents object
(setq acadDocument (vla-get-activedocument
(vlax-get-acad-object)))

;retrieve a reference to the selection sets object
(setq ssets (vla-get-selectionsets acadDocument))

;add a new selection set
(setq newsset (vla-add ssets "SS1"))

:select your new selection set objects
(vla-selectOnScreen newsset)

:set the counter to zero
(setq ctr 0)

;count the number of objects and loop
(repeat (vla-get-count newsset)

;retrieve each object
(setq item (vla-item newsset ctr))

;check if the entity has a color property
;and it can be updated
(setg check (vlax-property-available-p item "Color" T))

Aif it can
(if check

;change it's color
(vlax-put-property item 'Color 5)

)iif

‘increment the counter
(setq ctr (1+ ctr))

);repeat

‘delete the selection set
(vla-delete (vla-item ssets "SS1"))

(princ)
);defun

(princ)

First we need to reference the selection set collection. Looking at the

Object Model, we find this collection to be part of the "Active Document” Object.

After grabbing and storing our reference, using the (vla-get-selectionsets) function, we then
need to create a new selection set. (SS1) using the

(vla-add) function.

O.K. that's done, now what next?

Well, we've got a selection set but there's nothing in it. Using the (vla-selectOnScreen) method,
we populate our selection set with the

Objects that we would like to process. Again, we use the (repeat) function

to loop through all of our objects, checking if each object has a color

property and is updateable before changing it's color. Of course, we

don't need to convert these Objects as they are already VLA Objects.

The final step in our application is to delete the selection set to prevent

"Selection Set Already Exists" errors when we run the routine again.

Selecting with Filters

Now things get a wee bit tricky. | suggest you read the chapter on "Arrays" before you carry on
with this section, as a good understanding of them will help you a lot.

First of all, let's have a look at the VBA syntax for Selecting with Filters :

object.SelectOnScreen [FilterType][, FilterData]

Object : SelectionSet
The object or objects this method applies to.

FilterType : Integer; input-only; optional
A DXF group code specifying the type of filter to use.

FilterData : Variant; input-only; optional
The value to filter on.

ActiveX requires a Filter Type to be an Array of Integers, and the Filter Data to be an Array of
Variants. To Filter for all Objects on Layer "7" we would write it like this in Visual Lisp:

;create a single element array for the DXF Code
(setq filter_code (vlax-make-safearray vlax-vbinteger '(0 . 0)))

;create a single element array for the value
(setq filter_value (vlax-make-safearray vlax-vbvariant '(0 . 0)))

;DXF Code for layers

(vlax-safearray-fill filter_code '(8))

;the filter value
(vlax-safearray-fill filter_value '("7"))

;Use Select on Screen to select objects on Layer 7
(vla-selectOnScreen newsset filter_code filter_value)

In AutoLisp you would write this :

(setg newsset (ssget '((8."7"))))

This is how the revised program would look :

(defun selectionvl (/ ssets acadDocument newsset ctr item filter_code filter_value)

;load the visual lisp extensions
(vl-load-com)

;retrieve a reference to the documents object
(setq acadDocument (vla-get-activedocument
(vlax-get-acad-object)))

;retrieve a reference to the selection sets object
(setqg ssets (vla-get-selectionsets acadDocument))

;add a new selection set
(setq newsset (vla-add ssets "SS1"))

;create a single element array for the DXF Code
(setq filter_code (vlax-make-safearray vlax-vbinteger '(0 . 0)))

;create a single element array for the value
(setq filter_value (vlax-make-safearray vlax-vbvariant '(0 . 0)))

;DXF Code for layers
(vlax-safearray-fill filter_code '(8))

;the filter value
(vlax-safearray-fill filter_value '("7"))

;Use Select on Screen to select objects on Layer 7
(vla-selectOnScreen newsset filter_code filter_value)

;set the counter to zero
(setq ctr 0)

;count the number of objects and loop
(repeat (vla-get-count newsset)

;retrieve each object
(setq item (vla-item newsset ctr))

;check if the entity has a color property
;and it can be updated
(setq check (vlax-property-available-p item "Color" T))

dif it can
(if check

;change it's color
(vlax-put-property item 'Color 5)

)iif

;increment the counter
(setq ctr (1+ ctr))

);repeat

:delete the selection set
(vla-delete (vla-item ssets "SS1"))

(princ)
);defun

(princ)

To select ALL the Circles on Layer "2", We would write this :

;create a 2 element array for the DXF Code
(setq filter_code (vlax-make-safearray vlax-vbinteger '(0 . 1)))

;create a 2 element array for the values
(setq filter_value (vlax-make-safearray vlax-vbvariant '(0 . 1)))

;DXF Code for Objects and Layer
(vlax-safearray-fill filter_code '(0 8))

;the filter values
(vlax-safearray-fill filter_value '("CIRCLE" "2"))

;select ALL Circles on Layer 2
(vla-select newsset acSelectionSetAll nil nil filter_code filter_value)

This is the equivalent in AutoLisp :

(setq newsset (ssget "x" '((0 . "CIRCLE") (8."2"))))
]

To select ALL Circles OR Text, we would write this :

;create a 4 element array for the DXF codes
(setq filter_code (vlax-make-safearray vlax-vbinteger '(0 . 3)))

;create a 4 element array for the names
(setq filter_value (vlax-make-safearray vlax-vbvariant '(0 . 3)))

;DXF Codes for OR and Objects
(vlax-safearray-fill filter_code '(-4 0 0 -4))

;the filter values
(vlax-safearray-fill filter_value '("<or" "CIRCLE" "TEXT" "or>"))

;select ALL Circles OR Text
(vla-select newsset acSelectionSetAll nil nil filter_code filter_value)

In AutoLisp, this is equivalent to :
(setq newsset (ssget "x" '((-4 . "<or") (0. "CIRCLE") (0 ."TEXT") (-4 . "or>"))))
Can you see what we are doing?

We are basically "splitting" the AutoLisp dotted pairs into two arrays, one containing the DXF
codes, and the other containing the filter values.

There is another way of filtering the Selection Set itself. Consider this code:

(if (= (vlax-get-property item 'ObjectName) "AcDbCircle")
(vlax-put-property item 'Color 3)
);if

Makes you think doesn't it?

Selection Set Already EXxists

Did you notice how, at the end of our routines, we added the line :
(vla-delete (vla-item ssets "SS1"))

If we didn't delete the selection set, next time we ran the routine we would get a "Selection Set
Already Exists" error. Now adding this line is fine if everything runs correctly in our routine, but
what happens if the user Cancels or there is another error that causes our program not to reach
this line.

Have a look at this :

(defun selset_test ()
(vl -1 oad-com

(setq acadDocunent (vl a-get-activedocunent
(vl ax- get - acad- obj ect)))

(setq ssets (vla-get-selectionsets acadDocunent))
(setq flag nil)
(vlax-for itemssets
(if (= (vla-get-nanme item "newsset")
(setq flag T)
);if
);

(if flag
(vla-delete (vla-itemssets "newsset"))
) if
(setg newsset (vl a-add ssets "newsset"))

) ; def un

This routine loops through each selection set in the selection set collection.
If it finds the selection set (newset), it deletes it and then creates it. If it does not find it, it simple
creates it.

A better way of achieving the same result, is to make use of the (vl-Catch-All-Apply) function :

(defun selset_testl ()
(vl -1 oad-com

(setq acadDocunent (vl a-get-activedocunent
(vl ax- get - acad- obj ect)))

(setq ssets (vla-get-selectionsets acadDocunent))
(if (vl-catch-all-error-p (vl-catch-all-apply 'vlia-item (list ssets "$Set")))
(setqg newSet (vla-add ssets "$Set"))
(progn
(vla-delete (vla-itemssets "$Set"))
(setqg newSet (vl a-add ssets "$Set"))
); progn
);if
Have a wee look at "Error Trapping” for a more detailed explanation of the
(vI-Catch-All-Apply) function.
=

Well, that's about it with "Selecting Objects.” Not too bad, hey?
(I can hear you groaning from here in Africa, Hee, hee, hee.)

Collections

All Objects in AutoCAD are grouped into collections. If you have a look at the AutoCAD
Object Model, you will find all the Layers within the Layers collection, all the Blocks within
the Blocks collection, etc. etc.

This tutorial will show you how to first, create a reference to the required collection,
secondly, extract objects stored within the collection, and last but not least, manipulate
these Objects.

Let's start right at the bottom of the Object Model with the Documents collection. Open
any two drawings in AutoCAD then open the Visual List Editor and enter this :

_$ (vl-load-com)

_$ (setq acadObject (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00adc088>

Let's have a look at the "acadObject" in the Inspect window :

UL Inspect: ¥LA-OBJEC]

|1:t{ﬁ,.f|_,£-., OBJECT I.ﬁ.cadﬁ.ppllcatlnn IIIEIau:h:EIEE}

¢octivelocument: #HVLA-QBJECT lacadDe
<opplication: #OLA-OBJECT lAcaddpplicat
<Caption: AutaCAD 2000 - [kenny. dwg

i<Documents> HoOCLA-OBJECT lAcadDocum
<FullM ames D.kﬁ.Eﬁ.DEDDD\.&E&D.E}{E |
<Height> 580

<Localeld> 1033

¢MenuBar: H<WLA-OBJECT lacadienul ar
<MenuGroups: #HOCLA-OBJECT lAcadkenul
<Mame: AutoCaAD

<Pathx D:NaCab2oo0

<Preferences: H<MVLA-OBJECT lacadPrefere
YBE> HVLA-OBJECT WBE 029326
Serzion: 15.0h [Hardware Lock)

MYigibler vlam-true

Swidthe - 808

Owfindowleft: -4

OwfindowStater 3

OindowT ope: -4

The object that we are interested in at this stage is the Documents object. Let's drill down
toit:

_$ (setq acadDocuments (vla-get-documents acadObject))
#<VLA-OBJECT IAcadDocuments 01f585d0>

Have look at the variable "acadDocuments" in the inspect window :

B854

<aoplication: H<VLA-OBJECT |Acadipplicat

oyt 2

As you can see, this collection contains 2 objects. But how do we access these objects?
Copy and paste the following coding and save it as "tempList .Isp" :

(defun tenpList (theQoject / item dwgNane)

(vl -1 oad-com
(setqg theList '())
(vlax-for itemtheQject
(setg dwgNanme (vl ax-get-property item' Nanme))
(setqg theList (append (list dwgNane) thelList))
)
(setqg theList (reverse thelList))
(princ)
) ; def un

Don't worry to much at this stage about how this function works. We'll get to that later.
Load the function and then type the following :

_$ (tempList acadDocuments)

Now examine the variable "theList" :

_$thelist
("Kenny.dwg" "is handsome.dwg")

This list now holds the contents of the Documents collection, or in other words, all the
drawings you have open within AutoCAD..

Let's go further in the Object Model and have a look at the Layers collection.
We first get a reference to the "Active Document” :

_$ (vl-load-com)
_$ (setq acadDocument (vla-get-activedocument (vlax-get-acad-object)))

#<VLA-OBJECT IAcadDocument 00ee0f84>
Next, a reference to the Layer's collection :

(setq theLayers (vla-get-layers acadDocument))
#<VLA-OBJECT IAcadLayers 01f5b0a4>

Now, let's extract all the Layer names into a list :

_$(templList theLayers)
_S$theList
(II OII 11} 1" n 2" n 3II Il4|l lI5ll n 6Il n 7" IIDEFPOINTSII n 8" II9II n 10")

Great, we now have a list of all our Layers within the current drawing.
|

To manipulate objects within a collection, we first need to iterate through the collection
and extract a reference to the object, or objects that we are interested in. Visual Lisp
provides us with a few functions to help us with this task. Let's say for example that we
wanted to change all the Layers in the drawing to Color 3. Consider this :

(defun laycol ()
(vl -1 oad-com
(setq acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq theLayers (vl a-get-layers acadDocunent))
(setq i 0)
(repeat (vl a-get-count thelLayers)
(setq alLayer (vla-itemthelLayers i))
(vl a-put-col or al ayer 3)
(setg i (1+ 1))
) ; repeat
(princ)
) ; def un

Here we've used the standard AutoLisp function "repeat” to loop through the collection.
We used the "vla-get-count” function to count the number of objects in the collection, and
the function "vla-item" function to extract each object from the collection.

On the next page we'll have a look at a few more functions that will make your life a lot
easier when dealing with collections.

On the first page we looked at changing all the Layers Color property using the "repeat”
command. Here's a much easier and quicker way :

(defun laycol1l ()

(vl -1 oad-com

(setq acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq theLayers (vl a-get-layers acadDocunent))

(vlax-for itemtheLayers

(vla-put-color item 3)

)
(princ)
) ; def un

"vlax-for" allows you to loop through each item in the collection, without having to count
the number of objects and doing away with the need for loop control. This is the same
method | used in the "tempList" function that we used earlier on in this tutorial.

Here's another example. Would you like to ensure that all your Layers are On before
performing a certain function? Have a look at this :

(defun layeron ()

(vl -1 oad-com

(setq acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq theLayers (vl a-get-layers acadDocunent))

(vlax-for itemthelLayers

(vl ax-put-property item "LayerOn" ':vlax-true)

)
(princ)
) ; def un

One word of warning. DO NOT Add or Remove objects whilst iterating through a
collection. This can and will cause errors.

One of the most powerful commands in our collections arsenal is the "vlax-map-
collection” function. If you are not familiar with the "mapcar"” and "lambda" functions, |
suggest you read my tutorial on these functions.

Load and run this in the Visual Lisp Editor :

(defun layer-dunp ()

(vl -1 oad-com

(setq theList "())

(set q acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq theLayers (vl a-get-layers acadDocunent))

(vl ax- map-col | ecti on theLayers 'vl ax-dunp-obj ect)

(princ)

) ; defun

This will dump all properties of all the Layer objects in your drawing to the console
screen.

You are not limited to Visual Lisp functions within a "vlax-map-collection” call. You can
also use your own user defined function. Let's say for some reason we wanted to make a
list of all Layers in your drawing, switch all Layers On and change every Layer in the
drawing to Color "5". This is how you could do it :

(defun | ayer Map ()

(vl -1 oad-com

(setq theList "())

(setq acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq theLayers (vl a-get-layers acadDocunent))

(vl ax- map-col | ecti on theLayers '| ayer-nod)

(princ)

) ; defun

(defun |l ayer-nod (thelLayer)
(setg dwgNanme (vl ax-get-property thelLayer 'Nane))
(setqg theList (append (list dwgNanme) thelList))
(setqg theList (reverse thelList))
(vl ax-put-property theLayer "LayerOn" ':vlax-true)
(vl a- put-col or thel ayer 5)

) ; def un

As you can see, each Layer object is passed to the function "layer-mod" as the
argument. You could also write this as an inline function using "lambda" :

(defun | ayer Mapl ()
(vl -1 oad-com
(setq theList "())
(setq acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq theLayers (vl a-get-layers acadDocunent))
(vl ax- map-col | ecti on thelLayers
" (lanbda (thelLayer)
(setq dwgNanme (vl ax-get-property thelLayer 'Nane))
(setq theList (append (list dwgNane) theList))
(setq theList (reverse theList))
(vl ax- put - property thelLayer "LayerOn" ':vlax-true)
(vl a- put-col or thel ayer 5)
) ; | anbda
); vl ax- map-col | ecti on
(princ)
) ; def un

Want to add to a collection? Let's add a new Layer to our drawing :

(defun | ayer Add ()

(vl -1 oad-com

(setq acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq theLayers (vl a-get-layers acadDocunent))

(setq newLayer (vla-add theLayers "Steel"))

(vl a- put-col or newLayer 5)

(vl a-put-1linetype newLayer "Dashed2")

(princ)

) ; def un

This routine creates a new Layer named "Steel" with Color "5" and a Linetype of
"Dashed?2". If the Layer already exists, this routine simply does nothing.

|
To delete a Layer from the collection, simply use the "delete" method :

_$ (vla-delete newLayer)

Be careful though, if any objects within your drawing are referencing this Layer, you will
get an error :

_$ (vla-delete newLayer)
; error: Automation Error. Object is referenced by other object(s)

Right, I've had enough of talking about collections. Now I'm going to check out my beer
collection. It's not very big as | only collect the full ones. The empty ones | throw away.
Ta, tafor now.......

Reactors

"What the heck is a reactor?

| asked myself exactly the same question when | first came across the phrase. "It must be
another name for an Event”, | said to myself. | was wrong, again!!!

A reactor is an Object you attach to AutoCAD Objects to have AutoCAD notify your
application when a particular event, or events occur.

(Remember, that an AutoCAD Object can be an Object within your drawing, the drawing
itself, or even AutoCAD, the application - just thought I'd tell you).

This is the general procedure :

B An Event occurs in your drawing.

B AutoCAD notifies the Reaction associated with that Event.

Bl The reaction then notifies your application, known as a callback function, passing to it
certain information applicable to the Event in the form of arguments.

Il Your application then does it's thing using the information passed to it from the Reactor.

So, in simple terms, a Reactor is the "link" between the Event and the callback function.

Before we get into looking at the different types of AutoCAD Reactors and Events, let's
have a look at a fairly straightforward Reactor to give you an idea of how simple they can
be. Before you start though, you must ask yourself two questions :

1. Before, after or during what Event do you want your function to occur?
2. What do you want your function to do?

For this example, | will answer both these questions on your behalf.

1. "l want my function to run every time a drawing Save is completed".
2. "l want the function to tell me what the name of the drawing is, and how big the
drawing is".

O.K. Looking at the Reactor listings, (Refer to Visual Lisp Reference), under the Editor
Reactor Types, | find a reactor called "vl-dwg-reactor". This reactor, | am led to believe,
responds to the "Save Complete" event of a drawing, and returns callback data of a string

containing the actual file name used for the save.
Hey, this is just what we are looking for. Let's order two to take-away.

Enough of this childish wit!!
Let's have a look at the reactor definition and syntax first :

vir-dwg-reactor - Constructs an editor reactor object that notifies of a drawing event.
(vlr-dwg-reactor data callbacks)

Arguments :

data : AutoLisp data to be associated with the reactor object, or nil, if no
data

callbacks : A list of pairs of the following form :
(event-name . callback_function)

where event-name is one of the symbols listed in the "DWG reactor events"
table, and callback_function is a symbol representing the function to be
called when the event fires. Each callback function will accept two
arguments :

reactor_object - the VLR object that called the callback function,

list - a list of extra data elements associated with the particular event.

| don't know about you? But, whew......... n
Right, let's try and put this into simple English. Let's look at the syntax again :

(vlr-dwg-reactor data callbacks)

The first part "vir-dwg-reactor" is easy. This is the name of the reactor type. This name
will be sent to your call back function.

The first argument "data", is User Application Data. We usually set this to a reactor name
of our choosing. This way we can distinguish between reactors if an Objects has multiple
reactors attached.

The second argument "callbacks" is a straightforward list of dotted pairs.

B The first element of the list is the name of the reactor "event" that will trigger the reactor
and then call your callback function.
B The second element, is the name of your Callback function.
This is what our reactor function will look like :

(vlr-dwg-reactor "Save Complete" '((:vlr-savecomplete . savedrawinginfo)))

Or, graphically :

The Reactor Type Reactor Event

Application Data Callback Function
(user Reactor Name) l

(vir<lwg-reactor "Save Complete” '((:virsavecomplete . Savedrawinginfo)))

v

Calling Reactor Name
and

Event parameter information

v

Callback Function

Let's have a look at our Reactor Function in action. Copy and Paste this coding into the
Visual Lisp Editor and save it as "SaveDrawinginfo.Lsp".
Next Load the application, but DO NOT run it.

(vl-load-com)

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkhkkkkkhkkkkkkkkkkkkkk
’

;setup and intilise the reactor
(vlr-dwg-reactor "Save Complete

(:vir-savecomplete . savedrawinginfo)))

s kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkhkkkkkkkhkkkkkhkhkhkkkhkkhkhkkkkhkkhkkkkkkkx
(defun saveDrawinglinfo (calling-reactor commandinfo / dwgname filesize
reactType reactData reactCall
reactEvent reactCallback)

;get the reactor Object
(setq reactinfo calling-reactor

;get the reactor Type
reactType (vl-symbol-name (vir-type reactinfo))

;get the Application Data
reactData (vir-data reactinfo)

;get the Callback list
reactCall (car (vir-reactions reactinfo))

;extract the Event Reactor
reactEvent (vl-symbol-name (car reactCall))

;extract the Callback Function
reactCallback (vl-symbol-name (cdr reactCall))

);setq

;get the Drawing Name
(setq dwgname (cadr commandInfo)

;extract the filesize
filesize (vl-file-size dwgname)

);setq

;display the Drawing Name and Size
(alert (strcat "The file size of " dwgname " is "

(itoa filesize) " bytes."))

;Display the Reactor Information
(alert

(strcat
"A""\"" reactType "\"" " named " "\"" reactData "\"" "\n"
"was triggered by a" "\"" reactEvent "\"" " event call." "\n
"Callback Data was passed to the" "\n"
"\"" reactCallback "\"" " call back function."))

(princ)
);defun

skkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkk
’

(princ)

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkkkkkk
’

Once the application is loaded, return to AutoCAD and save the drawing.
This dialog will appear :

AutoCAD Mezzage

Followed by this dialog :

AutoCAD Message i _]

& U H-DWGE-Reactar'! named 'S ave Complete!
was friggered by a " VLR-zaveComplete' event call.

Callback [Drata waz passed ta the
"SAVEDRAWANGINFOY call back function.

Do you notice the "calling-reactor" and "commandInfo" argument declarations? This
information, the Reactor Object Name and the Event Parameter Information is passed to
our Callback Function from the Reactor.

Clever hey?

On the next Page, we'll have a look at some Drawing Reactors.

Another Editor Type of reactor is the "VLR-Command-Reactor". This reactor notifies us of
a Command Event. In this instance we will make use of the "vlr-commandEnded" reactor
event which returns a event parameter list containing a string identifying the command
that has been cancelled.

Every time a drawing is plotted, our call back function will first, save the drawing, and
secondly save the drawing to a backup directory, namely C:/Backup. Let's have a look at
the coding :

(pronmpt " \nLoad Only....Do NOT Run...")

(vl -1 oad-com

v hkkkkhkhkhkkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhhkhkkhkkhhkAhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkhkhkkkkhk*k

(vl r-comrmand- r eact or

"Backup After Plot" '((:vlr-conmmandEnded . endPlot)))

rhkkkkkkhkkkhkkhkkhkhkkkhkhkhkkhkkhkhkhkkhkkhkhkkkhkkhkhkkhkkhkhkhkkkhkhkhkkhkkhkhkhkkhkkhhkhkkhkkhkhkkhkkhkkhkhkkkkhkk*k
’

(defun endPl ot (calling-reactor endcommandl nfo /
t heconmandend dr gNane newnane)
(setq thecommandend (nth O endconmandl nfo))
(if (= theconmandend "PLOT")
(progn

(set q acadDocunent (vl a-get-activedocunent
(vl ax- get - acad- object)))

(setq drgNanme (vl a-get-nanme acadDocunent))
(setq newnane (strcat "c:\\backup\\" drgNane))
(vl a- save acadDocunent)
(vl a- saveas acadDocunent newnane)
); progn
);if

(princ)

) ; def un

rhkkhkhkkhkkhkhkhkkkhkhkhkkhkhkhkhkkhkhhkhkkhkhhkhkkhkhkhkkkhkhkhkkhkkhkhkhkkhkkhhkhkkhhkhkkhkhhkhkkhkkhhkkkhkkhkhkkk*k
’

(princ)

A word of warning!!! Did you notice how | used ActiveX statements and functions to
"Save" and "SaveAs". You cannot use interactive functions from within a reactor as
AutoCAD may still be processing a command at the time the event is triggered. Therefore,
avoid the use of input-acquisition methods such as "getPoint", "ensel", and "getkword",
as well as "selection set" operations and the "command" function.

Here's another interesting command event reactor :

When a user adds Text or Hatch to the drawing, the layer will automatically change to
Layer "4" or Layer "6" respectively. When the command is completed, or cancelled, the
user is returned to the original Layer he was on before he started the command. Save the
file as "LayMan.Isp", BUT please remember, that as this routine contains reactors, you
must only Load it and NOT Run it. If you want to use this routine on a permanent basis,
you'll have to ensure that it is loaded at startup. There is also no checking to ensure that
the layers exist, are frozen, switched off, etc. and no other form of error checking. I've got
to leave something for you to do!!!

(pronmpt " \nLoad Only....Do NOT Run...")
(vl -1 oad-com

rhkkhkkkkhkkkhkkhkhkhkkhkkhkhkhkkhkhkhkhkkhkhhkhkkhkhkkhkkkhkkhkhkkkhkkhkhkkkkhkk*k
’

(vl r-comrmand- r eact or

nil "((:vlr-commandW I I Start . startConmand)))
(vl r-command- r eact or

nil "((:vlr-comandEnded . endConmand)))
(vl r-comrmand- r eact or

nil "((:vlr-comandCancelled . cancel Comrand)))

DI I b b S b b b S b b S S R R S kS S b i b S S b b i b b I I R b i S

(defun start Command (calling-reactor startconmandl nfo /
t hecommandst art)

(setq A dLayer (getvar "CLAYER'))

(setqg thecommandstart (nth O startconmmandl nfo))

(cond
((= theconmmandstart "TEXT") (setvar "CLAYER' "4"))
((= thecommandstart "MIEXT") (setvar "CLAYER' "4"))
((= theconmandstart "DTEXT") (setvar "CLAYER' "4"))

((= thecommandstart "HATCH') (setvar "CLAYER' "6"))
((= theconmandstart "BHATCH') (setvar "CLAYER' "6"))
); cond
(princ)
) ; def un

rhkkkkhkhkkhkkhkkhkhkhkhkhkkhkhkkhkkhkkhkhkkhkhkhkkhkhkkhhkhkkhkhkkhhkhkhkhkkhkhkkhkkhkkhkhkhkkhkkhkhkkhkhkhkkhk
'

(def un endConmand (cal |l i ng-reactor endcommandl nfo /
t hecommandend)

(setq thecommandend (nth O endconmandl nf o))
(cond

t hecommandend "TEXT") (setvar "CLAYER' d dLayer))

t hecommandend " MIEXT") (setvar "CLAYER' O dLayer))
t hecommandend " DTEXT") (setvar "CLAYER' O dLayer))
t hecommandend "HATCH') (setvar "CLAYER' O dLayer))
t hecommandend "BHATCH') (setvar "CLAYER' O dLayer))

A~ NSNS
—~ AN
L1 I I T I I

); cond

(princ)
) ; def un

rhkkkhkhkhkkhkkhkhkhkhkhkkhk ki hkhkkhkhkkhkhkhkkhkhkhhkhkhkhkhkhkAhhkhkhkhkAhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhhkkx
'

(def un cancel Conmand (cal |l i ng-reactor cancel commandl nfo /
t heconmmandcancel)
(setq thecommandcancel (nth O cancel conmandl nfo))

((= thecommandcancel "TEXT") (setvar "CLAYER' O dLayer))

((= thecommandcancel "MIEXT") (setvar "CLAYER' d dLayer))
((= theconmmandcancel "DTEXT") (setvar "CLAYER' O dLayer))
((= thecommandcancel "HATCH') (setvar "CLAYER' d dLayer))
((= thecommandcancel "BHATCH') (setvar "CLAYER' O dLayer))

) ; def un

L b 20 20 0 I S S 30 Jb 30 b b I I b b S 0 b b I P b S b b b b I b S I b b b b P i I I b b b I I S S i b b b b
)
(princ)

||

Did you notice that this application used three command reactors with three different
command events. We could have incorporated all three reactor events and call back
functions under one command reactor type, but | prefer to leave them separate for clarity
and ease of debugging.

O.K. that's enough of command reactors. Let's have a look at Object Reactors.

Object Reactors, or "VLR-Object-Reactor", fall under general reactor types. They are
almost identical in functionality to Drawing and Command reactors except for a couple of
things! They need to include a reference to the Object that will be reacted upon, (Crikey,
that sounds terrible!!) and the reference to the Object needs to be created before the
reactor is called. Let's have a look at the syntax of an Object reactor :

(vlr-object-reactor owners data callback)

The "data" and "callback" arguments, we are familiar with. But what is the "owner"
argument? This is an AutoLisp list of Visual Lisp Objects identifying the drawing Objects
to be watched. In other words, a reference to the Object that contains the reactor.

The reactor event we are going to use is the ":vir-modified event”, and our Callback
function will be named "print-length".

Have a look at the coding for our reactor :

(vlr-object-reactor (list myLine) "Line Reactor" '((:vir-modified . print-length)))

As | mentioned earlier though, we need to have a reference to the Object before we can
call this statement. Consider the following :

(vl -1 oad-comnm

rkkkkkkkkkkkkk*k

(defun line-draw ()

(setq acadDocunent (vl a-get-activedocunent (vl ax-get-acad-object)))
(setq nspace (vl a-get-nodel space acadDocunent))

(setq apt (getpoint "Specify First Point: "))

(setq pt (getpoint "Specify next point: " apt))

(setq nyLine (vl a-addline nspace (vl ax-3d-point apt)(vlax-3d-point pt)))

(setqg lineReactor (vlr-object-reactor (list nyLine)
"Line Reactor" '((:vlr-nodified . print-length))))

(princ)
) ; defun

We started off by drawing a line. As the line was created from scratch, and created using
Visual Lisp functions, we already have a reference to the line Object. (myLine). We can
now safely run our reactor function and attach it to our Line.

"But where is the Callback function?"

Hah, | was waiting for that. We've made the Callback function a separate function for one

main reason. If we didn't, every time we ran the application it would prompt us to draw a
new line. So, what we have to do now, is link the reactor function to our Callback function
so that when our line is modified, only the Callback function is put into motion. The
reactor sends three arguments to the Callback function, the notifier-object (our line), the
reactor-object (:vir-modified), and the event parameter-list which in this case is nil.

Here's the coding for the Callback function :

(defun print-length (notifier-object reactor-object paraneter-1ist)

(cond
((vl ax-property-avail able-p notifier-object "Length")
(alert (strcat "The length is now "
(rtos (vla-get-length notifier-object)))))
) ; cond
(princ)
) ; defun
(princ)

Copy all of this coding into one file and save it as "Line-Draw.Lsp". Now load "Line-
Draw.Lsp" and then run (line-draw). Draw a single line when prompted. Now stretch the
line so that it's length changes. A dialog will appear displaying the new length of the line :

The length iz now 4531

AutoCAD I'-"I:

In essence, this is what happened :

B We loaded "Line-draw.Lsp" and all functions contained within were placed into memory.

B We ran (line-draw) which prompted us to draw a line. The reactor was then loaded and
linked to both the line Object and the Callback function.

B As the Callback function "print-length” was also loaded into memory, every time we modify
the line Object, the Callback function is processed and the length of the line is displayed.

Did you notice how we checked that our Object had a "Length" Property before
continuing? Good idea, as this validation can save lot's of problems.

"But what happens when | close my drawing? Will | lose all my reactors?"

Good questions. Reactors can be transient or persistent. Transient reactors are lost when
the drawing closes and this is the default reactor mode. Persistent reactors are saved with
the drawing and exist when the drawing is next open.

You can use the "vir-pers” function to make a reaction persistent. To remove a persistence
from areactor and make it transient, use the "vir-pers-release" function. To determine
whether a reactor is persistent or transient, use the "vlr-pers-p" function. Each function
takes the reactor Object as it's only argument :

_$(vir-pers lineReactor)
#<VLR-Object-Reactor>

If successful "vir-pers" returns the specified reactor Object.

Note : A reactor is only a link between an event and a Callback function. The Callback
function is not part of the reactor, and is normally not part of the drawing. The reactors
saved in the drawing are only usable if their associated Callback functions are loaded in
AutoCAD.

In other words, if we made our reactor "lineReactor" persistent, we would have to ensure
that the Callback function "print-length" was loaded every time the drawing containing our
lines with reactors was opened.

Visual Lisp and Menu's.

This tutorial was very kindly written by Stig Madsen. and is published, here on AfraLisp,
with permission.

Before starting on this tutorial, | presume that you are familiar with AutoCAD menu's and
that you have a bit of experience in modifying menu's or creating your own partial
menu's. It will also make things a lot easier for you if you have a basic understanding of
AutoCAD's macro language.

I

O.K. enough chirping from me, over to Stig....

This code will do the following:

Create an empty menu file, vbamenu.mns, if it doesn't already exist

Create a new menugroup called "VbaMenu" if it doesn't already exist YBA Load

——— WBA Editor
Create a new pulldown menu in the menugroup "VbaMenu" VEBA Macio
WES Manager E—
Populate the pulldown menu with items of our own choice T L e T
£oam
Load and install the menugroup into AutoCAD View E”‘”t
a0 Objects

Save the menufile as "VbaMenu.mns" and compile it to "VbaMenu.mnc" S

Following code has a nested DEFUN in it. This technique is used to avoid passing around
variables to different routines. Everything in the nested subroutine CreateMenu gets
executed if the pulldown menu we are looking for doesn't exist. Of course, it could be
placed within a lengthy PROGN statement at the end of the test, but this way the code
does a much more obvious branching.

Notice that our new menufile isn't actually loaded before we make sure that it isn't already
loaded. Because AutoCAD deals with standard Windows issues when setting up menus,
strange things can happen if we force a multiple load of the same menu.

(defun C. VBATOOLBARMENU (/ fn acadobj thisdoc nenus flag currMenuG oup
newiMvenu

newiVenul t em openMacr o

)

: CreateMenu is a nested DEFUN that is executed if our "VbaMenu"

;; pull down nmenu doesn't exist. Atest for the presence of this
;; pulldown nenu is done in the main code
(defun createMenu ()
;; Add a new popUpMenu to currMenuG oup, i.e. to "VbaMenu"
(setq newMenu (vl a-add (vl a-get-nmenus curr MenuG oup) "V&BA Menu"))
;; create the first pulldown item vbal oad
(setq openMacro (strcat (chr 3) (chr 3) (chr 95) "vbal oad" (chr 32)))
(setq newMenul t em
(vl a-addMenul t em
newiVenu
(1+ (vl a-get-count newiVenu))
"VBA &lLoad"

openMacr o

)
(vl a-put-hel pString newMenultem "Load a VBA Application")
;; create the second pulldown item vbaide
(setq openMacro (strcat (chr 3) (chr 3) (chr 95) "vbaide" (chr 32)))
(setq newMenul t em
(vl a-addMenul t em

newiVenu

(1+ (vl a-get-count newienu))
"VBA &Editor"

openMacr o

)
(vl a-put-hel pString newMenultem "Switch to the VBA Editor")
;; create the third pulldown item vbarun
(setq openMacro (strcat (chr 3) (chr 3) (chr 95) "vbarun" (chr 32)))
(setq newMenul t em
(vl a- addMenul t em

newiVenu

(1+ (vl a-get-count newienu))

"VBA &Macr 0"

openMacr o

)

(vl a- put - hel pStri ng newienultem "Run a VBA Macro")

;; create the fourth pulldown item vbaman

(setq openMacro (strcat (chr 3) (chr 3) (chr 95) "vbaman" (chr 32)))
(setq newMenul t em

(vl a- addMenul t em

newiMvenu
(1+ (vl a-get-count newienu))
" &VBA Manager "

openMacr o

)

(vl a-put-hel pStri ng newMenultem "D spl ay the VBA Manager")
;; Insert a separator after the fourth nenu item

(vl a- AddSepar at or newienu 5)

;; Create a sinple nenu nacro

(setq

openMacro (strcat (chr 3) (chr 3) (chr 95) "zoomt (chr 32) "w' (chr
32))

)
(setg newMenul tem
(vl a-addMenul t em
newiVenu
(1+ (vl a-get-count newivenu))
" &oont

openiMacr o

(vl a-put-hel pStri ng newienul tem "Zoom W ndow")
,; create a nenu itemthat |oads and runs an AutoLl SP routine
(setq openMacro (strcat (chr 3)
(chr 3)
(chr 95)
“(if (not c:ddvpoint) (load \"ddvpoint\")"
(chr 32)

"ddvpoi nt"

)

(setq newMenul t em
(vl a-addMenul t em
newiVenu
(1+ (vl a-get-count newienu))
"Vi ew &Poi nt"

openMacr o

)
(vl a-put-hel pStri ng newenultem "Vi ew Point")

;; Create a nenu itemthat calls an I nmage nenu

(setq openMacro (strcat (chr 3)

(chr 3)
(chr 95)

"$l =i mage_3dobj ects $I =*"

)

(setq newMenul t em
(vl a-addMenul t em
newiVenu
(1+ (vl a-get-count newienu))
"&3D (bj ect s”

openMacr o

)
(vl a-put-hel pStri ng newenultem "3D obj ects")
;; Create a nenu itemwth a hyperlink
(setq openMacro (strcat (chr 3)
(chr 3)
(chr 95)
"browser"
(chr 32)
"www. af ral i sp. cont

(chr 32)

)

(setq newMenul tem
(vl a-addMenul t em
newiVenu
(1+ (vl a-get-count newienu))
" &Af raLi sp. cont'

openiMacr o

)

(vl a-put-hel pString newMenultem "Go visit this awesone pl ace, or
el sel")

;; Insert the pulldown nenu into the nmenu bar, third fromthe end
(vl a-insert|nMenuBar
newivenu

(- (vla-get-count (vla-get-nmenuBar acadobj)) 2)

;; re-conpile the VBAMVENU nenu - VBAMENU. MNC
(vl a-save curr MenuG oup acMenuFi | eConpi | ed)
;; save it as a MNSfile

(vl a-save curr MenuG oup acMenuFi | eSource)

First, check to see if our nenu file "VbaMenu. ms" already

exists. If it doesn't then sinply nmake an enpty file that

we can later wite our nenu definition to

(setq flag nil)

(if (not (findfile "VbaMenu.ms"))

(progn

(setq fn (open "VbaMenu. ms" "w'))

(close fn)

Get hold of the application object - we will use it to
retrieve the nmenuGoups collection, which is a child object

of the application

(setq acadobj (vl ax-get-acad-object))

Get the active docunent - also a child of the application

(setq thisdoc (vla-get-activeDocunent acadobj))

Get all nmenugroups | oaded into Aut oCAD

(setq nenus (vl a-get-nmenuG oups acadobj))

Now we could use VLA-ITEMto test if "VbaMenu" exists anong
all | oaded nmenugroups wth (vla-item nenus "VbaMenu").

I nstead, as a friendly service, we want all | oaded nenus to
be printed to the screen and at the sane tinme we m ght as well

use it to set a flag if "VbaMenu" is anong the | oaded nenus

(princ "\ nLoaded nenus: ")

(vl ax-for n menus
(if (= (vla-get-nanme n) "VbaMenu")
(setq flag T)
)
(terpri)

(princ (vl a-get-nanme n))

., | f VbaMenu wasn't anong the | oaded nenus then load it
(if (null flag)
(vl a-1 oad nenus "VbaMenu. ms")
)
(setq currMenuGoup (vla-item nmenus "VbaMenu"))
;I f no popUpMenus exi st in VbaMenu then go create one -
,; otherwise exit with grace. In this exanple we nerely check
;; 1 f the nunber of popup nenus in "VbaMenu" is greater than O.
,; A safer way to test for its presence would be to set up a
;; test for its nane, "V&BA Menu":
;7 (vla-item (vl a-get-nmenus currMenuG oup) "V&BA Menu")
(if (<= (vla-get-count (vl a-get-menus currMenuG oup)) O0)

(creat eMenu)

(princ "\'nThe nmenu is already | oaded")

(princ)

|
Now navigate your way to VbaMenu.mns and open it. You should see something like this :

I
/I AutoCAD menu file - D:\drawings\VbaMenu.mns
I

**MENUGROUP=VbaMenu

***POP2

ID_mnuVBA Menu [V&BA Menu]

ID_VBA Load [VBA &Load]*C"C_vbaload

ID_VBA Editor [VBA &Editor]*C*"C_vbaide

ID_VBA Macro [VBA &Macro]*C"C_vbarun

ID_VBA Manager [&VBA Manager]*C"C_vbaman

[--]

ID_Zoom [&Zoom]*"CAC_zoom w

ID_View Point [View &Point]*C*C_(if (not c:ddvpoint) (load "ddvpoint") ddvpoint
ID_3D Objects [&3D Objects]*C C_$Il=image_3dobjects $I=*
ID_AfraLisp.com [&AfraLisp.com]*C”AC_browser www.afralisp.com

**TOOLBARS

***HELPSTRINGS

ID_VIEW POINT [View Point]

ID_AFRALISP.COM [Go visit this awesome place, or else!]
ID_VBA MANAGER [Display the VBA Manager]

ID_VBA LOAD [Load a VBA Application]

ID_ZOOM [Zoom Window]

ID_VBA MACRO [Run a VBA Macro]

ID_3D OBJECTS [3D objects]

ID_VBA EDITOR [Switch to the VBA Editor]

I
/ End of AutoCAD menu file - D:\drawings\Vbamenu.mns
I

You should also find VbaMenu.mnc and VbaMenu.mnr in the same folder. Even though
the VbaMenu.mns didn't exist when we started, Visual Lisp has created it as well as all the
coding necessary and compiled the other menu support files required for the menu to
run.

Next we'll have a look at creating Toolbar menu's.

Using Stigs coding as a template, I've written the follow routine that creates a Toolbar menu.
Please ensure that the toolbar bitmap files are within your AutoCAD support path before
loading and running this application.

(defun C. VBATOOLBARMENU (/ fn acadobj thisdoc nenus flag curr MenuG oup
newTlool bar newTool barButton openMacro
Smal | Bi t mapNane Lar geBi t mapNane)

(vl -1 oad-com

., CreateToolbar is called if the Tool bar in gquestion doesn't exist
(defun createTool bar ()
(set g newrlool bar (vl a-add (vl a-get-tool bars currMenuG oup) "VBA Menu"))
;; create the first Tool bar Button, VbalLoad
(setqg openMacro (strcat (chr 3) (chr 3) (chr 95) "vbal oad" (chr 32)))
(set g newrlool barButton (vl a-addTool barButt on
newTool bar
(1+ (vl a-get-count newrlool bar))
"VBA Load" "VBA Load" openMacro

)

)
(setqg Snal | Bi t mapNane " VbalLoad. bnp")

(setqg LargeBi t mapNane "VbalLoad. bnmp")
(vl a- set Bi t maps newTlool bar Button Snal | Bi t mapNanme Lar geBi t napNane)

(vl a-put -hel pString newlool barButton "Load a VBA Application")
;; create the second Tool bar Button, Vbaide
(setq openMacro (strcat (chr 3) (chr 3) (chr 95) "vbaide" (chr 32)))
(setg newTool barButton (vl a-addTool barButton

newTool bar

(1+ (vl a-get-count newTool bar))

"VBA Editor" "VBA Editor" openMacro

)

)
(setqg Smal | Bi t mapNane " Vbai de. bnp")
(setqg LargeBit mapNane " Vbai de. bnp")
(vl a- set Bi t maps newTlool bar Button Snal | Bi t mapNane Lar geBi t mapNane)

(vl a-put-hel pString newTlTool barButton "Switch to the VBA Editor")
;; Create the third Tool bar Button, Vbarun
(setq openMacro (strcat (chr 3) (chr 3) (chr 95) "vbarun" (chr 32)))
(set g newTool barButton (vl a-addTool barButt on

newTlool bar

(1+ (vl a-get-count newTool bar))

"VBA Macro" "VBA Macro" openMacro

)

)
(setqg Snal | Bi t mapNane " Vbanacr o. bnp")
(setqg LargeBit mapNane "Vbanmacro. bnp")

(vl a- set Bi t maps newTool bar Button Smal | Bi t mapNane Lar geBi t mapNane)

(vl a- put - hel pString newTool barButton "Run a VBA Macro")
;; create the fourth Tool bar Button, Vbaman
(setg openMacro (strcat (chr 3) (chr 3) (chr 95) "vbaman" (chr 32)))
(set g newrlool barButton (vl a-addTool barButton
newTool bar
(1+ (vl a-get-count newTool bar))
"VBA Manager" "VBA Manager" openMacro

)

)
(setq Smal | Bi t mapNane " Vbaman. bnp")

(setqg LargeBi t mapNane "Vbanman. bnp")
(vl a-set Bi t maps newTlool bar Button Snal | Bi t mapNane Lar geBi t mnapNane)

(vl a-put -hel pString newlool barButton "Di splay the VBA Manager")

;; re-conpile the VBATOOLBARVENU nmenu - VBATOOLBARVENU. MNC
(vl a-save currMenuG oup acMenuFi | eConpi | ed)

;; save it as a M\S file

(vl a-save currMenuG oup acMenuFi | eSour ce)

)

(setq flag nil)
(if (not (findfile "VbaTool bar Menu. ms"))

(progn
(setq fn (open "VbaTool bar Menu. ms" "w'))
(cl ose fn)

)

)
;; get hold of the application object

., we'll use it to reference the menuG oups coll ection
(setq acadobj (vl ax-get-acad-object))
;; .. and get the active docunent
(setq thisdoc (vla-get-activeDocunent acadobj))
;; get all nenu groups |oaded into Aut oCAD
(setq nmenus (vl a-get-nmenuG oups acadobj))
(princ "\ nLoaded nenus: ")
(vl ax-for n nenus

(if (= (vla-get-nanme n) "VbaTool bar Menu")

(setq flag T)
)

(terpri)

(princ (vla-get-nanme n))
)
;; 1 f VbaTool bar Menu wasn't anong the | oaded nmenus then load it
(if (null flag)

(vl a-1 oad nenus "VbaTool bar Menu. mms")

)

(setqg currMenuG oup (vla-item nenus "VbaTool bar Menu"))

;; 1 f no Tool bars exist in VbaTool bar Menu then go create one
;; otherwi se exit with grace
(if (<= (vla-get-count (vla-get-nenus currMenuG oup)) 0)
(createTool bar)
(princ "\'nThe Vba Tool bar Menu is already | oaded")

)
(princ)
)

(princ)

| |
Your "VbaToolbarMenu.mns", should look like this :

1
/I AutoCAD menu file - D:\drawings\VbaToolbarMenu.mns
1l

**MENUGROUP=VbaToolbarMenu

**TOOLBARS

*VBA_MENU

ID_VBA_Menu_0O[_Toolbar("VBA Menu", _Floating, Show, 168, 152, 1)]

ID_VBA Load_O[Button("VBA Load", "VbaLoad.bmp", "VbaLoad.bmp")]*C"C_vbaload
ID_VBA_Editor_0 [_Button("VBA Editor", "Vbaide.bmp", "Vbaide.omp")]*C”*C_vbaide
ID_VBA_Macro_0 [_Button("VBA Macro", "Vbamacro.bmp"”, "Vbamacro.bmp")]*C*C_vbarun
ID_VBA_Manager_0 [_Button("VBA Manager", "Vbaman.bmp", "Vbaman.bmp")]*C*C_vbaman

***HELPSTRINGS

ID_VBA_MANAGER_O [Disply the VBA Manager]
ID_VBA _LOAD 0O |[Load a VBA Application]
ID_VBA_MACRO_O0 [Run a VBA Macro]
ID_VBA_EDITOR_0 [Switch to the VBA Editor]

1
/l End of AutoCAD menu file - D:\drawings\VbaToolbarMenu.mns
1

Your Toolbar should look like this :

¥ba Menu [|

% #1 » =

Visual Lisp and Errors

In standard AutoLisp, if your program encounters an error of any sort, it passes to the *error*
function only one thing, a description of the error, and your program then ends.
Let's have a quick look at this in action. Load and run this little routine :

(defun error-testl ()
(setq int (getint "\nEnter Nunmber : "))
(setq result (apply "sqgrt (list int)))

(alert (strcat "Result = (rtos result)))
(princ)

) ; def un

Enter "4" at the command prompt. This should result in an alert dialog displaying the answer
"Result = 2".

..... | ,,h 5]

Now, run it again and enter "- 4".
Your program will come up with an error :

_$ (error-testl)
; error: function undefined for argument: -4

The reason being of course, is that you cannot determine the square root of a negative number.
Now let's add our error trap :

(defun error-testl ()
(setq tenperr *error*)
(setq *error* trap)
(setq int (getint "\nEnter Nunmber : "))
(setq result (apply '"sqgrt (list int)))

(alert (strcat "Result = (rtos result)))

(princ)
) ; def un

(defun trap (errnsg)
(setq *error* tenperr)
(alert errnsq)
(alert "There was an error!!")
(princ)
) ; def un
Load and run the program again. The error will be encountered and control will pass to the error

trap which will display two alert dialogs, one displaying the error message, and one displaying a
user defined error message :

Your program will now stop. In a properly designed program, the error trap function would reset
the system to the state it was in before your program started. (eg. snaps would be reset, system
variables would be reset, etc).

Now this fine if you're using standard AutoLisp, but if you are using Visual Lisp function, this is
another matter. Many of the Visual Lisp functions are designed to be used in the "programming
by exception” style. This means they either return useful values if they succeed, or raise an
exception if they fail (instead of returning an error value). If your program uses Visual Lisp
functions, you must prepare it to catch exceptions, otherwise the program halts, leaving the user
at the command prompt.

The advantage of this though, is that your program can intercept and attempt to process errors
instead of allowing control to pass to the *error* function.

For this we would use the "vl-catch-all-apply" function which is designed to invoke any function,
return the value from the function, and trap any error that may occur. You could call it an "inline
local error function.”

The function requires two arguments :

Bl asymbolidentifying a function or "lambda" expression
[l alist or arguments to be passed to the calling function

Here's how we would use it in our program :
(setq result (vI-catch-all-apply 'sqrt (list int)))

Almost exactly the same as the "apply" function hey!

Now load and run the following, entering "- 4" at the command prompt to force and error :

(defun error-test2 ()
(setqg int (getint "\nEnter Nunmber : "))
(setq result (vl-catch-all-apply "sqgrt (list int)))
(alert (strcat "Result =" (rtos result)))
(princ)
) ; def un

An error message should appear at the Console prompt :

_$ (error-test2)
; error: bad argument type: numberp: #<%catch-all-apply-error%>

Have a look at the variable "result" in the Watch window :

60" (] 2+ 10

FH'E SULT = He #rcatch-all-apply-ermars:

The variable contains an "error object"!!

If the program runs correctly, "vl-catch-all-apply" stores the return value in "result". If the call is
unsuccessful, "vl-catch-all-apply" stores an error object in "result”.

Using the "vl-catch-all-error-p" function, we can test for this "error object" :

(defun error-test2 ()
(setq int (getint "\nEnter Nunmber : "))
(setq result (vl-catch-all-apply "sqgrt (list int)))
(if (vl-catch-all-error-p result)
(progn
(setq int (abs int))
(setq result (vl-catch-all-apply "sqgrt (list int)))
); progn
)iif

(alert (strcat "Result =" (rtos result)))

(princ)
) ; def un

Load and run this routine entering "- 4" at the command prompt. This should have caused an
error, but because we used the "vl-catch-all-apply” function, the error was trapped and by testing
for the error using "vl-catch-all-error-p”, we were able to rectify the problem by using the "abs"
function.

Let's add our normal error function :

(defun error-test2 ()
(setq tenperr *error*)
(setq *error* trap)
(setq int (getint "\nEnter Nunber : "))
(setq result (vl-catch-all-apply "sqrt (list int)))
(if (vl-catch-all-error-p result)
(progn
(setq int (abs int))
(setq result (vl-catch-all-apply "sqgrt (list int)))
); progn
);if
(alert (strcat "Result =" (rtos result)))
(princ)
) ; def un
(defun trap (errmnsg)
(setq *error* tenperr)
(alert errnsg)
(alert "There was an error!!")
(princ)
) ; def un

Load and run the program, again entering "- 4" at the command prompt.
No error, everything runs smoothly. Now run the program again, but this time hitting "Esc" at the
command prompt. This error is not an ActiveX error, therefore the error is passed to our

conventional error trap to be processed.
Hey, we've got two "error" functions to play with now!

Another good example of when to us the "vl-catch-all-apply" function, is when dealing with
"Selection Sets" using Visual Lisp.

When you first create a selection set in Visual Lisp, all is well and good. But, if you try to create a
selection set that already exists, you will raise an error. Here's a way around that problem :

(defun selset_testl ()
(vl -1 oad-com

(setq acadDocunent (vl a-get-activedocunent
(vl ax- get - acad-object)))

(setq ssets (vla-get-selectionsets acadDocunent))
(if (vl-catch-all-error-p (vl-catch-all-apply 'vlia-item (list ssets "$Set")))
(setq newSet (vla-add ssets "$Set"))
(progn
(vla-delete (vlia-itemssets "$Set"))
(setg newSet (vl a-add ssets "$Set"))
); progn
) if
) ; def un

If the selection sets does not exists, the selection set is created. If it does exist, it is first deleted
and then created.

Visual Lisp and Layers

| have had so many queries lately regarding Visual Lisp and Layer's, that | decided to dedicated a
complete section dedicated to this subject. Please remember though, that what you read here is not all
encompassing in regards to Layers and could possible be added to over time. (in other words, I'm
making excuses in case | miss anything).

Layer's in AutoCAD are contained within the Layer's Collection which is stored in the Document Object
which is part of the Documents Collection which is part of the Application Object or AutoCAD itself.
Confused? Have a look at an extract from the AutoCAD Object Model :

Appl i cati on(Obj ect)
I
I
| ------- Docunent s[Col | ecti on]
| I
| I
| I
| Docunent (Obj ect)
| I
| I
| | ------ Layers------- Layer
| [Col | ecti on] (Obj ect)
I
I
I
I

To retrieve a Layer to play with, we first need to access the Layer's Collection.
Type this at the Console prompt :

_$ (vl-load-com)
_$ (setq acadobject (vlax-get-Acad-Object))
#<VLA-OBJECT IAcadApplication 00adc088>

We are now in the Application Object. Now let's sneak into the Document Object :

_$ (setq activedocument (vla-get-activedocument acadobject))
#<VLA-OBJECT IAcadDocument 01945554>

And into the Layers Collection we go!

_$ (setq LayerTable (vla-get-layers activedocument))
#<VLA-OBJECT IAcadLayers 01a070bc>

"But, hang on one second, you jumped from the Application Object straight to the Document Object!!"
Hey, well spotted. I'm glad to see that you're wide awake. OK, | suppose an explanation would be in
order.

Let's run adump on the Application Object :

_$ (vlax-dump-object acadobject)
; IAcadApplication: An instance of the AutoCAD application

; Property values:

; ActiveDocument = #<VLA-OBJECT IAcadDocument 01945504>

; Application (RO) = #<VLA-OBJECT IAcadApplication 00adc088>
; Caption (RO) ="AutoCAD 2000 - [Drawingl.dwg]"

; Documents (RO) = #<VLA-OBJECT IAcadDocuments 02d06860>
; FullName (RO) = "C:\\ACAD2000W\acad.exe"

; Height =776

; Localeld (RO) = 1033

; MenuBar (RO) = #<VLA-OBJECT IAcadMenuBar 02d096c4>

; MenuGroups (RO) = #<VLA-OBJECT IAcadMenuGroups 015baf2c>
; Name (RO) = "AutoCAD"

; Path (RO) ="C:\\ACAD2000"

; Preferences (RO) = #<VLA-OBJECT IAcadPreferences 015bb9ec>
; Statusld (RO) = ...Indexed contents not shown...

; VBE (RO) = #<VLA-OBJECT VBE 03404a04>

; Version (RO) = "15.0h (Hardware Lock)"

; Visible = -1

; Width = 1032

; WindowLeft = -4

; WindowState = 3

; WindowTop = -4

-

Do you see what | see? The Active Document Object is a Property of the Application Object. This means
that we can access it directly without having to retrieve it from the Documents Collection. Clever hey?

Still not convinced. OK, let's do it the long way around :

_$ (setq acadobject (vlax-get-Acad-Object))
#<VLA-OBJECT IAcadApplication 00adc088>

Again we've accessed the Application Object. Now let's get into the Documents Collection :

_$ (setqg documentcollection (vla-get-documents acadobject))
#<VLA-OBJECT IAcadDocuments 01a03d30>

Now, we'll retrieve the Document Object for the drawing

_$ (setq thedocument (vla-item documentcollection 0))
#<VLA-OBJECT IAcadDocument Ola6f6a4>

And finally we retrieve the Layers Collection.

_$ (setq LayerTable (vla-get-layers thedocument))
#<VLA-OBJECT IAcadLayers 02fdca64>

But, what happens if we have two or more drawings open and we want to access the Layers Collection of
one of the other drawings?

Let's think about this. Where would the inactive documents (your other drawings) be stored?

| would say in the Documents Collection wouldn't you agree?

Let's try this out. First of all open two new drawings, Drawingl.dwg and Drawing2.dwg. Ensure that
Drawingl.dwg is the active drawing. Now type this at the Console prompt.

_$ (setq acadobject (vlax-get-Acad-Object))
#<VLA-OBJECT IAcadApplication 00adc088>

Again we've accessed the Application Object. Now let's get into the Documents Collection :

_$ (setqg documentcollection (vla-get-documents acadobject))
#<VLA-OBJECT IAcadDocuments 01a03d30>

Now, we'll retrieve the Document Object for the specific inactive drawing

_$ (setq thedocument (vla-item documentcollection "Drawing2.dwg"))
#<VLA-OBJECT IAcadDocument 0la6f6a4>

And finally we retrieve the Layers Collection.

_$ (setq LayerTable (vla-get-layers thedocument))
#<VLA-OBJECT IAcadLayers 02fdca64>

Let's test this out. Let's change the current Layer in Drawing2.dwg to Layer 0. Ensure that Drawingl.dwg
is still the active drawing and enter this at the Console prompt :

_$ (vla-put-activelayer thedocument (vla-item LayerTable 0))
nil

Switch to Drawing2.dwg. Layer 0 should have become the current Layer.
|

To avoid confusing you any further by dealing with multiple workspaces, let's go back to just one active
drawing. Close all drawings and open a new drawing. Enter this at the Console prompt :

_$ (setq acadobject (vlax-get-Acad-Object))

#<VLA-OBJECT IAcadApplication 00adc088>

_$ (setq activedocument (vla-get-activedocument acadobject))
#<VLA-OBJECT IAcadDocument 01945554>

_$ (setq LayerTable (vla-get-layers activedocument))
#<VLA-OBJECT IAcadLayers 01a070bc>

No messing about this time! Straight to the Layers Collection.
Right, down to the nitty gritty. First create a Layer in your drawing named "TestLayer".
OK, now let's access "TestLayer" from the Layers Collection :

_$ (setq theLayer (vla-item LayerTable "TestLayer"))
#<VLA-OBJECT IAcadLayer 02fce56c>

Let's list the properties and methods of this Layer :

_$ (vlax-dump-object theLayer T)
; IAcadLayer: A logical grouping of data, similar to transparent acetate overlays on a drawing

; Property values:
; Application (RO) = #<VLA-OBJECT IAcadApplication 00adc088>
; Color =7

Document (RO) = #<VLA-OBJECT IAcadDocument 01945554>
Freeze =0

Handle (RO) = "957"

HasExtensionDictionary (RO) =0

LayerOn =-1

Linetype = "CONTINUOUS"

Lineweight = -3

; Lock =0

; Name ="TestLayer"

; ObjectID (RO) = 26864120

; ObjectName (RO) = "AcDblLayerTableRecord"
; OwnerlD (RO) = 26862608

; PlotStyleName ="Color_12"

; Plottable = -1

; ViewportDefault = 0

Methods supported:
Delete ()

; GetExtensionDictionary ()
; GetXData (3)

; SetXData (2)

-~

To create a new Layer, we simply add it to the Layers Collection :

_$ (setq aNewLayer (vla-add LayerTable "NewLayer"))
#<VLA-OBJECT IAcadLayer 02fce7bc>

You should have a new Layer in your drawing named "NewLayer".
But, our new Layer has been created with default colour and linetype values namely, 7 and Continuous.
Let's change them :

_$ (vla-put-color aNewLayer 2)

nil

Changes the colour of our Layer to 2 (yellow).

_$ (vla-put-linetype aNewLayer "Dashed2")

nil

Changes the linetype of our Layer to "Dashed?2". "Dashed 2" of course, must be loaded within our

drawing.
Conversely, if you want to find the Colour and Linetype of a particular Layer you would do this :

_$ (vla-get-color aNewLayer)
2

_$ (vla-get-linetype aNewLayer)
"DASHED2"

Let's play around with our new Layer. First, change to any other Layer in your drawing.
OK, let's switch our Layer OFF and then back ON :

_$ (vla-put-layeron aNewLayer :vlax-false)
nil

_$ (vla-put-layeron aNewLayer :vlax-true)
nil

Next we'll FREEZE our Layer :

_$ (vla-put-freeze aNewLayer :vlax-true)
nil

And to THAW the Layer :

(vla-put-freeze aNewLayer :vlax-false)
nil

Right, now we'll LOCK it :

_$ (vla-put-Lock aNewLayer :vlax-true)
nil

And now UNLOCK the Layer :

_$ (vla-put-Lock aNewLayer :vlax-false)
nil

Should we now make the Layer UNPLOTTABLE?

_$ (vla-put-plottable aNewLayer :viax-false)
nil

Now we'll make the Layer PLOTTABLE :

_$ (vla-put-plottable aNewLayer :vlax-true)
nil

Want to change the Layer's LINEWEIGHT? Let's change it to 0,35mm :

_$ (vla-put-LineWeight aNewLayer 35)
nil

Let's change the Lineweight back to DEFAULT :

_$ (vla-put-LineWeight aNewLayer -3)
nil

"ByLwDefault" =-3

"ByBlock" =-2

"ByLayer" =-1

Other Values are : 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200,
211.

In AutoCAD, make our new Layer the current Layer, and draw a line.
Now let's delete our new Layer :

_$ (vla-delete aNewLayer)
; error: Automation Error. Object is referenced by other object(s)

Oh, oh. We have an error. Think about it! How can we delete the Layer if it is being referenced by our
Line Object?
OK, Let's delete the Line and try again :

_$ (vla-delete aNewLayer)
; error: Automation Error. Object is referenced by other object(s)

What, still an error? That's because the Layer is current and is therefore referenced by the Document
Object.
Now make any other Layer current and try for a third time :

_$ (vla-delete aNewLayer)
nil

Hurray, success at last. The Layer is now an "Ex-Layer".
|

Here's a couple of Layer routines written using Visual Lisp that you may find useful.
Turn All Layers ON :

(defun C:Layeron (/ acadDocument theLayers)

(vl-load-com)

(setqg acadDocument (vla-get-activedocument (vlax-get-acad-object)))
(setq theLayers (vla-get-layers acadDocument))

(vlax-for item theLayers (vlax-put-property item "LayerOn" ":vlax-true))
(princ)

);defun

(princ)

This routine will place a Prefix in front of all Layer names ;and rename them.
Of course, it will not rename Layer "0" or "Defpoints”.

(prompt "\nType ChLayName to run......... ")

(defun C:ChLayName (/ acadDocument theLayers layName pre)
(vl-load-com)

(setq pre (getstring "\nEnter Layer Prefix : "))

(setq acadDocument (vla-get-activedocument (vlax-get-acad-object)))
(setq theLayers (vla-get-layers acadDocument))

(vlax-map-collection theLayers 'layer-mod)

(princ)

);defun

(defun layer-mod (theLayer)
(setq layName (vlax-get-property theLayer 'Name))
(if (not (member layName '("0" "Defpoints™)))
(vla-put-Name thelayer (strcat pre layName))
) ;if
);defun
(princ)

Create a layer using Visual Lisp?

;. Returns a layer object or nil
;;;on creation failure
(defun mLayer (LayerName)
(vl-load-com)
(setq LayerName
(vl-catch-all-apply
'vla-add
(list
(vla-get-layers
(vla-get-activedocument
(vlax-get-acad-object)
)
)
Layername
)
)
)
(if (vl-catch-all-error-p LayerName)
nil
LayerName
)
)

This routine will return a list of all Layers in the active drawing :

(defun C:LayList (/ acadobject activedocument LayerTable thelist)
(vl-load-com)

(setqg acadobject (vlax-get-Acad-Object))

(setg activedocument (vla-get-activedocument acadobject))

(setqg LayerTable (vla-get-layers activedocument))

(vlax-for each LayerTable

(setq thelist (cons (vla-get-Name each) thelist))

)

(if thelist (reverse thelist))

);defun

(princ)

Visual Lisp and Profiles

Profiles are a great way of quickly loading your standard settings and ensuring that drawing office
standards are adhered too.

To get to the Profiles in Visual Lisp, we need to reference the PreferencesProfiles Object. Here's an
extract from the AutoCAD Object Model :

Application (Object)
I
I

[----- Preferences
(Object)

I

| |
| |
| |
| [----- PreferencesProfiles
| | (Object)
| |

| |

| |

Firstly, we need a reference to the Application Object :

_$ (vl-load-com)

_$ (setq acadobject (vlax-get-Acad-Object))
#<VLA-OBJECT IAcadApplication 00adc088>

And next the Preferences Object :

_$ (setq acadprefs (vla-get-preferences acadobject))
#<VLA-OBJECT IAcadPreferences 02d003cc>

And now a reference to the PreferencesProfiles Object :

$ (setq acadprofiles (vla-get-profiles acadprefs))
#<VLA-OBJECT IAcadPreferencesProfiles 02d003bc>

Let's run adump on the PreferencesProfile Object :

_$ (vlax-dump-object acadprofiles T)
; IAcadPreferencesProfiles: This object contains the options from the Profiles tab on the Options dialog

; Property values:
; ActiveProfile = "<<Unnamed Profile>>"
; Application (RO) = #<VLA-OBJECT IAcadApplication 00adc088>

; Methods supported:

; CopyProfile (2)

; DeleteProfile (1)

; ExportProfile (2)

; GetAllProfileNames (1)
; ImportProfile (3)

; RenameProfile (2)
; ResetProfile (1)
-~

As you can see, this Object has only one Property that really interests us, the Active Profile, but seven
Methods that look quite interesting
Let's have a look at the Active Profile Property first :

_$ (setq actprofile (vla-get-ActiveProfile acadprofiles))
"Admin"

This tells us quite clearly that the Active Profile on my system is a profile named "Admin".
But, we would like to have a list of all profile names. For this we would need to use the
GetAllProfilesNames Method :

(vlax-invoke-method acadProfiles 'GetAllProfileNames 'thelist)
nil

Let's have a look at "thelist" "

_$thelist
#<safearray...>

Oh, oh, it's a safearray. We need to convert it :

_$ (vlax-safearray->list thelist)
("Admin" "Eric")

That's better, now we've got a list of all presently loaded profiles.
Let's load a new one :

_$ (setqg NewProfile (vlax-invoke-method acadprofiles 'ImportProfile "NDBE51D1"
"c:/Profiles/INDBE51D1.arg" :vlax-true))
nil

Have a look at your "Profiles" under "Options". A new profile should have been Imported.
Let's check that it's there programmically :

_$ (vlax-invoke-method acadProfiles 'GetAllProfileNames 'thelist)
nil

_$ (vlax-safearray->list thelist)

("Admin" "Eric" "NDBE51D1")

OK, I'm happy now, | know it's there.
We still though, need to make it the Active Profile :

_$ (vla-put-ActiveProfile acadProfiles "NDBE51D1")
nil

Let's Export a profile :

_$ (vlax-invoke-method acadProfiles 'ExportProfile "Eric" "c:/profiles/eric.arg")

nil

Have a look in your Profiles directory. You should have a new arg file.
Right, now let's be nasty and delete a profile :

_$ (vlax-invoke-method acadProfiles 'DeleteProfile "NDBE51D1")
; error: Automation Error. Cannot delete a profile that is in use.

Ha, ha, of course we can't delete that profile 'cos it's the Active Profile.
OK, let's try another one :

_$ (vlax-invoke-method acadProfiles 'DeleteProfile "Admin")
nil

Bye, bye, Mr Admin profile.
Let's reset a profile :

_$ (vlax-invoke-method acadProfiles 'ResetProfile "Eric")
nil

Hey, nothing happened! That's because the profile "Eric" is not the Active Profile.
Let's try again :

_$ (vlax-invoke-method acadProfiles 'ResetProfile "NDBE51D1")
nil

That's better, the profile is reloaded.
Let's copy an existing profile to a new profile :

_$ (vlax-invoke-method acadProfiles 'CopyProfile "NDBE51D1" "CopiedProfile")
nil

We now have a new profile named "CopiedProfile". Let's rename it :

_$ (vlax-invoke-method acadProfiles 'RenameProfile "CopiedProfile" "RenamedProfile")
nil

Let's list them again :

_$ (vlax-invoke-method acadProfiles 'GetAllProfileNames 'thelist)
nil

_$ (vlax-safearray->list thelist)

("Eric" "NDBE51D1" "RenamedProfile")

Here's a little application that you may find interesting. It will check the Login Name of the user and
automatically load the relevant Profile for that user.

Firstly you need to name your Profiles the same as your Login Name. e.g. if your Login Name is
NDBE51D1, your Profile must be named NDBE51D1.ARG. Then you need to store all your user Profiles in
the same folder. (This example uses "c:/profiles/").

Irrespective of which user logs in, the specific Profile for that user will be loaded if necessary, and made
Active.

Not much in the way of error checking at the moment I'm afraid.....

;CODING STARTS HERE
(prompt "\nType LoginProfile to run......")

(vl-load-com)

(defun C:LoginProfile (/ profilename acadprofiles actprofile
thelist profilepath)

;retrieve the users login name
(setq profilename (strcase (getvar "LOGINNAME")))

;retrieve a reference to the Profiles
(setq acadprofiles (vla-get-profiles
(vla-get-preferences (vlax-get-Acad-Object))))

;retrieve the Active Profile
(setq actprofile (strcase (vla-get-ActiveProfile acadprofiles)))

;if they are not the same
(if (/= profilename actprofile)

;do the following
(progn

;get a list of the loaded profiles
(vlax-invoke-method acadProfiles 'GetAllProfileNames 'thelist)

;convert to a list
(setq thelist (vlax-safearray->list thelist))

;if the profile is not in the list
(if (not (member profilename thelist))

;do the following
(progn

;store the profile file
(setq profilepath
(strcat "c:/profiles/" profilename ".arg"))

;if the profile is found
(if (findfile profilepath)

;do the following
(progn

;load the profile

(setq NewProfile (vlax-invoke-method
acadprofiles 'ImportProfile
profilename profilepath :vlax-true))

;make the profile the Active Profile
(vla-put-ActiveProfile acadProfiles profilename)

);progn

;profile file cannot be found - exit
(prompt (strcat "\nCannot find profile " profilepath))

);if
);progn

;itis loaded but make the profile the Active Profile
(vla-put-ActiveProfile acadProfiles profilename)

);if

);progn

;We could reload the Profile if we wish.
;Just uncomment the next line.
;(vlax-invoke-method acadProfiles 'ResetProfile profilename)

);if
(princ)
);defun

(princ)
:CODING ENDS HERE

Visual Lisp and Attributes

When you want to edit attributes in AutoCAD most of us use the "Attedit" command.
Firstly, we must select the attribute we would like to edit. Then the "Edit Attribute"
dialogue box appears which allows us to add or change the values of our attribute.
Personally, | think this dialogue leaves a lot to be desired. You cannot customise it in any
way, and it displays all attributes whether you want them or not. As well, if you have a lot
of attributes you need to page your way through numerous dialogues before reaching the
attribute you want to edit.

In this tutorial we are going to have a look at extracting attribute data from a block,
displaying the data in a custom dialogue box, and then updating the attribute data on exit.
Right, what do we need to do?

1. Find the block containing the attribute data. (Why select it when we can get AutoCAD
to find it for us.)

2. Extract the attribute data and display it in a dialogue box.
3. Allow the user to change the data if he so wishes.
4. Update the attribute data with the new information entered into the dialogue box.

O.K. fire up AutoCAD and open the drawing Attab-vl.dwg.

Kenny 18—-10-01

en Arrgt and Site Lavout

E12345 B

Alright, I admit that it's not much of atitle block, but it's enough to give you the general
idea.

Now, at the command prompt type (load "Addat-vl") and then enter.
Now, type "Addat-vl" and press enter again.

This dialogue should appear :

Drawing Title Block '

Dirawing Mumber

Bevision =

Drawn By K.enny

Drate 18-10-M

Title Gen > and Site Layout
OF. Cancel j

Afralizp - hittp: £ v, afralizp.com

Change some of the data and then press the "OK" button.
The title block data should be updated. Clever hey?

You can expand on this routine as much as you like using the following coding as a
template.

Hint : You don't have to display all the attribute data stored in a block. Only display what
you want the user to modify. As well, you can split your data over multiple dialogue
boxes. eg. One for title block, one for revisions, one for reference drawings, etc. All the
data though is contained in one attribute.

Here's the coding, DCL code first :

attabvl : dialog {
label = "Drawing Title Block";

- edit_box {
label = "&Drawing Number";
key ="eb1";
edit_width = 30;

}

- edit_box {
label = "&Revision";
key ="eb2";
edit_width = 30;

}

> edit_box {
label = "Drawn &By";
key ="eb3";
edit_width = 30;

}

- edit_box {
label = "D&ate";

key ="eb4";

edit_width = 30;
}

> edit_box {
label ="&Title";
key ="eb5";
edit_width = 30;
}

ok _cancel ;

‘text_part {
label ="AfraLisp - http://www.afralisp.com";

}

And now the Visual Lisp coding with plenty of in-line comments to assist you:

;CODING STARTS HERE

;All Tutorials and Code are provided "as-is" for purposes of instruction and
;utility and may be used by anyone for any purpose entirely at their own risk.
;Please respect the intellectual rights of others.

;All material provided here is unsupported and without warranty of any kind.
;No responsibility will be taken for any direct or indirect consequences
;resulting from or associated with the use of these Tutorials or Code.

; *kkkkkkkkkhkkkkkhkkkkhkhkkkhkkhkkkhkhkhkkhkkhkkkhkkkhkhkhkhkkkhkkkhkhkkkhkkhkkkhkhkhkkhkkkkkhkkkkkhkkk

; AfraLisp

; http://lwww.afralisp.com

; afralisp@afralisp.com

; afralisp@mweb.com.na

; *hkkkkkkkkhkkkkhkkkhkkhkhkhkhkkkhkhkhhkhkhkkhkhkhkhkhkhkkhkhkhkhkkkhkkhkkkhkhkhkhkkhkhkkhkkkhkkhkkkx

; This application will extract attributes from a block and display them in a
;dialog box. The attributes will then be updated.

;Dependencies : Attab-vl.dcl and Attab-vl.dwg are

;required and must be within the AutoCAD search path.

;Usage : Open Attab-vl.dwg then load and run Attab-vl.Isp.

kkkkkkkkkkkkkkkkkkkkkhkkhkkkhkkhkkkhkkhkkkhkkkkkkhkkhkrkhkkkkkhkkhkrkhkkhkhkkhkkkhrkhkrkhkkkkkkhrkhkrk
’

(prompt "\nATTAB-VL Loaded....Type ATTAB-VL to run.....")
(defun c:attab-vl (/)

;load visual lisp extensions
(vl-load-com)

;retrieve reference to the active document
(setqg acadDocument (vla-get-activedocument (vlax-get-acad-object)))

;retrieve reference to the selection set collection
(setq ssets (vla-get-selectionsets acadDocument))

;check if the selection set exists - $Set
(if (vl-catch-all-error-p (vl-catch-all-apply 'vla-item (list ssets "$Set")))

:;if it doesn't create a new one
(setg newsset (vla-add ssets "$Set"))

:if it does exist
(progn

‘delete it
(vla-delete (vla-item ssets "$Set"))

;then create a new one
(setq newsset (vla-add ssets "$Set"))

);progn
)iif

;create a single element array - integer
(setq filter_code (vlax-make-safearray vlax-vbinteger '(0 . 0)))

;create a single element array - variant
(setq filter_value (vlax-make-safearray vlax-vbvariant '(0 . 0)))

;filter for name - code 2
(vlax-safearray-fill filter_code '(2))

filter for block name - attab-info
(vlax-safearray-fill filter_value '("attab-info"))

;filter the drawing for the block
(vla-select newsset acSelectionSetAll nil nil filter_code filter_value)

;if the block is found
(if (>= (vla-get-count newsset) 1)

;display the dialog
(ddisplay)

;if the block is not found
(alert
"\nincorrect Drawing Sheet
\n Use Manual Edit"

)
);if

finish clean
(princ)

);defun

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

(defun ddisplay (/)

;load the dialog
(setq dcl_id (load_dialog "attab-vl.dcl"))

;check it exists
(if (not (new_dialog "attabvl" dcl_id))

(exit)
);if

retrieve the block reference
(setq item (vla-item newsset 0))

retrieve the attributes
(setq theatts (vla-getattributes item))

;convert to a list
(setq attlist (vlax-safearray->list (variant-value theatts)))

;extract the attributes
(mapcar 'set '(theattributel theattribute2 theattribute3 theattribute4 theattributeb) attlist)

;extract the text strings from the attributes
(setg eb1 (vla-get-textstring theattributel)
eb2 (vla-get-textstring theattribute2)
eb3 (vla-get-textstring theattribute3)
eb4 (vla-get-textstring theattribute4)
eb5 (vla-get-textstring theattributeb)
);setq

;put the info into the dialog
(set_tile "eb1" ebl)
(set_tile "eb2" eb?2)
(set_tile "eb3" eb3)
(set_tile "eb4" eb4)
(set_tile "eb5" ebb)

;set the focus to the drawing number
(mode_tile "eb1" 2)

;if cancel selected exit
(action_tile
"cancel"
"(done_dialog) (setq userclick nil)"

)

;if OK selected, retrieve the tile values
(action_tile
"accept”
(strcat
"(progn (setq ebla (get_tile \"eb1\"))"
"(setq eb2a (get_tile \"eb2\"))"
"(setq eb3a (get_tile \"eb3\"))"
"(setq eb4a (get_tile \"eb4\"))"
"(setq eb5a (get_tile \"eb5\"))"
" (done_dialog)(setq userclick T))"

)

)

;start the dialog
(start_dialog)

;unload the dialog
(unload_dialog dcl_id)

:if OK was selected
(if userclick

;do the following
(progn

;update the attribute textstrings
(vla-put-textstring theattributel ebla)
(vla-put-textstring theattribute2 eb2a)
(vla-put-textstring theattribute3 eb3a)
(vla-put-textstring theattribute4 eb4a)
(vla-put-textstring theattribute5 eb5a)

;update the block
(vla-update newsset)

;regen the drawing
(command "REGEN")

);progn
)iif

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

:load clean
(princ)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

;CODING ENDS HERE

Please note that there is no error checking in this routine and | have left all variables as
global to assist you in checking their values whilst you are analyzing the code.

Variable-auto-self-sizing-Dialog-Box-without-a-DCL-file

In this tutorial we're going to create an application that extracts attributes from a block and displays
these attributes within a dialog box. The dialog will be created "on-the-fly" and the number of attribute
edit boxes will be determined by the number of attributes.

We will be using a lot of Visual Lisp coding within this routine as | also want to demonstrate one method
of extracting and updating attributes using Visual Lisp.

No further explanation is necessary as the coding is well commented :

;; ; DCLATT. LSP
; This programis for denonstration and tutorial purposes only.

; This program using Visual Lisp will extract attributes from

;a block and display themin a dialog box.

; The dialog box will be created "on the fly" with the rel evant
; nunber of edit boxes ;to suit the nunber of attributes within
; t he bl ock.

; The new attribute data will then be retrieved fromthe dial og

;and the bl ock updat ed.

;Witten by Kenny Ramage - May 2002
;afral i sp@web. com na

;http://ww. afral i sp. com

; Usage :

; Load by typing (load "DCLATT") at the comrmand pronpt.

; Type DCLATT at the conmand pronpt to run.

; Sel ect any bl ock containing attri butes.

; Repl ace any of the values in the text boxes to updated
;the attributes.

; Dependencies : None that | know of.

; Not much in the way of error checking |I'm afraid.
,Limtations : WII only edit a certain nunber of attributes.
; Syst em dependent .

;1 don't recomrend nore than 10.

;1've had up to 14 on ny display.

(pronpt "\ nType DCLATT to run..... ")

(defun c:dclatt (/ theblock thelist n tagli st
txtlist g fnanme fn nu dcl _id | relist)

;1 oad the visual |isp extensions
(vl -1 oad-com

;get the entity and entity nanme
(setqg theblock (car (entsel)))

;convert to vl object
(setq thebl ock (vlax-enane->vl a-object theblock))

;check if it's a block
(if (= (vlax-get-property thebl ock ' Object Nane)
" AcDbBI ockRef er ence")

;if it is, do the follow ng
(progn

;check if it has attributes
(if (= (vlax-get-property thebl ock
'HasAttributes) :vlax-true)

;if it has attributes, do the foll ow ng
(progn

;get the attributes
(getatt thebl ock)

;create the dialog
(create_dial og)

;run the dialog
(run_t he_di al og)

;update the attributes
(upatt)

) progn

;No attributes, informthe user
(alert "This Block has No Attri butes!!
- Please try again.")

);if
) ; progn

;it's not a block, informthe user
(alert "This is not a Block!! - Please try again.")

(defun getatt (enam

,retrieve the attributes
(setqg thelist (vlax-safearray->list
(vari ant - val ue
(vla-getattributes enam)))

; process each attribute
(foreach n thelist

;get the tag attribute data
(setq taglist (cons (vla-get-tagString n) taglist)

;get the text attribute data
txtlist (cons (vlia-get-textString n) txtlist)

; how many attri butes?
lg (length taglist)

);setq
) ; foreach

;reverse the lists
(setq taglist (reverse taglist)
txtlist (reverse txtlist))

(defun create _dialog ()

,Create a tenp DCL file
(setq fnane (vl-filenanme-nktenp "dcl.dcl"))

,open it to wite
(setq fn (open fnane "w'))

;wite the dial og header coding
(wite-line "tenp : dialog { label = \"Edit Attributes\";" fn)

‘reset the increnental control number

(setq nu 0)

;start the loop to create the edit boxes
(repeat Ig

,Create the edit boxes

(wite-line ": edit_box {" fn)

(setg | (strcat "\"" "eb" (itoa nu) "\"" ";"))
(wite-line (strcat "key =" [|) fn)

(setqg | (nth nu taglist))

(wite-line (strcat "label = S U I W
(setqg | (nth nu txtlist))
(wite-line (strcat "value =" "\"" | "\"" ™"

(wite-line "alignnment = centered; edit_w dt

i ncrement the counter
(setqg nu (1+ nu))

) ; repeat

; 0k and cancel button
(wite-line "ok only; }" fn)

;close the tenp DCL file
(cl ose fn)

(defun run_the_dial og ()

;load the dialog file and definition
(setq dcl __id (Il oad_dial og fnane))
(if (not (new. dialog "tenp" dcl _id))
(exit)
);if

(node_tile "eb0" 2)

;i f the OK button is sel ected
(action_tile "accept" "(retatt)")
;start the dialog

(start_dial 0g)

;unl oad the dial og
(unl oad_di al og dcl _id)

;delete the tenp DCL file
(vl-file-delete fnane)

(defun retatt ()

‘reset the increnent counter
(setq nu 0)

start the | oop
(repeat Ig

;retrieve the tile val ue
(setq | (get _tile (strcat "eb" (itoa nu))))

;add it to the |ist
(setqg relist (cons | relist))

i ncrenment the counter
(setq nu (1+ nu))

) ; repeat
(setq relist (reverse relist))

; cl ose the dial og
(done_di al og)

(defun upatt ()

:reset the increment counter
(setqg nu 0)

;start the | oop
(repeat Ig

;update the attribute
(vla-put-textstring (nth nu thelist) (nth nu relist))

i ncrenent the counter
(setq nu (1+ nu))

) ; repeat

; updat e t he bl ock
(vl a-updat e t hebl ock)

) ; def un

(princ)

Now you need to create 2 or three blocks containing a varying number of attributes.

Here's what mine look like :

Attribute No 1 Attriputa No 2

VALITE Na 1 VAIUE No 1

Value No 2 Valie No 2

Valuse No 3 Value No 3

Value No 4

Load and run "DCLATT.LSP" and select "Attribute No 1".
You dialog should appear looking like this with three attribute edit boxes :

Edit Attnbutes

ATTRIBUTEA

ATTRIBUTE-2 Walue Mo 2

ATTRIBUTE-3 Walue Mo 3

014

Now run the program again, but this time select "Attribute No 2".

Edit Attnibutes

ATTRIBUTEA

ATTRIBUTE-Z Yalue Mo 2
ATTRIBUTE-3 Yalue Mo 3
ATTRIBUTE-4 Walue Mo 4
ok,

The dialog will appear, but this time with four attribute edit boxes.
Clever hey?

A big thanks to Stig Madsen for the help with the coding in this project.

Loading VBA Files

There are two AutoCAD functions that can you would use to Load and Run VBA Applications namely,
VBALOAD and VBARUN. In a menu file you would use them like this :

[Test]*"CrC~rCNP-vbaload test.dvb -vbarun Modulel.MyTest
Or, in an AutoLisp routine, you would write something like this :

(command "vbaload" "test.dvb")
(command "-vbarun" "Modulel.MyTest")

The VBALOAD function has one serious flaw though!
If a VBA application is already loaded, and you run VBALOAD again, you get an error message. Try it
out :

Command: -vbaload
Initializing VBA System...
Open VBA Project: test.dvb

Now try and load it again.

Command: -vbaload
Open VBA Project: test.dvb

You should get an error message :
"File already loaded d:/drawings/test.dvb"

This is where Visual Lisp come into play.

The function (VL-VBALOAD) behaves much like the command VBALOAD. You need to supply the file
name of a project or DVB file. The complete file name should be provided along with the path and DVB
extension. For example, if you want to load a project named MyProject.dvb in the C:\MyWork\ folder, the
(VL-VBALOAD) function call would appear as follows.

(VL-VBALOAD " C:/MyWork/MyProject.DVB")

You should note a couple of things right away. Visual LISP makes use of forward slashes when
separating folder or directory names. Also, the parentheses are required and the extension DVB is
needed for the project to be properly located.

Unlike the VBALOAD command, this function will not generate an error if the project has already been
loaded into the current drawing environment. Thus, programs can proceed smoothly by just calling the
load function and then calling the run function without concern about the project already being loaded.
Another interesting feature is that the Enable Macros/Virus Warning message does not appear when you
use the Visual LISP approach.

Therefore, your menu macro :

[Test]*CrCrCMP-vbaload test.dvb -vbarun MyTest

can be replaced with the following one:

[Test]*CrCACMP(vl-vbaload "test.dvb")(vl-vbarun "MyTest")
And of course, your AutoLisp coding should be replaced with this :

(vl-vbaload "test.dvb")
(vl-vbarun "MyTest")

Here's a little function that you could load at startup to help you locate, load and run VBA files:

;CODING START HERE
(defun VBA-LOADIT (ProjName Macro)
(if (findfile ProjName)

(progn
(vl-vbaload ProjName)
(vl-vbarun Macro)
);progn
)iif
(princ)

);defun

(princ)
:CODING ENDS HERE

Syntax : (vbaloadit "dvb-file" "macro")

Example : (vbaloadit "test.dvb" "MyTest")
[

You must keep some other considerations in mind when using (VL-VBALOAD) and (VL-VBARUN). For
example, after you invoke the (VL-VBARUN) function, the Visual LISP function will continue to run and
can (will) interfere with the VBA interface if you try to do too much. On the other hand, there are some
distinct advantages to using the Visual LISP approach to loading and launching VBA macros instead of
the command-line versions when programming a menu- or toolbar-based interface.

One thing to note is that the VBARUN is not a subroutine. That is, program execution will not be handed
to the VBA macro and the Visual LISP routine suspended as if it were running a function. Instead, the
Visual LISP function will continue to run as the VBA macro starts. The best thing to do is simply finish
the Visual LISP function as quickly as possible and let the VBA macro run the command interface from
that point forward. If you want to return to a Visual LISP function after running the VBA code, then use
the SendCommand method attached to the Document object in VBA. When you are ready to hand control
back to Visual LISP, call the function directly (remember to wrap parentheses around the command start
up for direct launches of Visual LISP functions). When you use this approach, the VBA program should
end and allow the Visual LISP function to proceed without interference. Similar to starting the VBA
macro in the first place, when you send commands to the AutoCAD document from VBA, they will be run

along with the VBA and sometimes this can result in confusion at the user level as the two try to take
turns. Note that you can pass parameters from VBA to the Visual LISP function by sending them as part
of the command stream. They will need to be converted to strings first, then sent to the Visual LISP
function as part of the function start up from the Send Command method.

NOTE : Sorry, but due to additions to the Object Model, this next section will only work in
AutoCAD 2002 :-(

Want to know what Projects are loaded in your drawing?
Type this at the console prompt :

_$ (vl-load-com)

_$ (setq 0App (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00ac8928>

_$ (setq oVbe (vlax-get oapp "VBE"))
#<VLA-OBJECT VBE 020b9c18>

_$ (vlax-dump-object oVBE T)
: VBE: nil

: Property values:

; ActiveCodePane = nil

; ActiveVBProject = #<VLA-OBJECT _VBProject 020ba620>

; ActiveWindow (RO) = nil

; CodePanes (RO) = #<VLA-OBJECT _CodePanes 00blc2e0>

; CommandBars (RO) = #<VLA-OBJECT _CommandBars 030b2a24>
; Events (RO) = #<VLA-OBJECT Events 020b9c94>

; MainWindow (RO) = #<VLA-OBJECT Window 020b8ce8>

; SelectedVBComponent (RO) = #<VLA-OBJECT _VBComponent 020ba748>
; VBProjects (RO) = #<VLA-OBJECT _VBProjects 020b9c4c>

; Version (RO) = "5.00"

; Windows (RO) = #<VLA-OBJECT _Windows 020b9d18>

: No methods
-

| presume you can see what | see? A "VBProjects" property.
Now that's interesting! But how do we extract the loaded Projects?
Load and run this small routine.

;CODING STARTS HERE
(defun Gvba (/oApp oVBE oProjs N Nams oProj)
(vl-load-com) ;requires automation links
(if (and
;Drill down to the Projects object
(setq oApp (vlax-get-acad-object))

(setq oVBE (vla-get-vbe 0App))
(setq oProjs (vlax-get oVBE "VBProjects"))

)

;Loop through Projects object
(repeat (setg N (vla-get-count oProjs))

;get the item at position N
(setg oProj (vla-item oProjs N)

;get the name property,
;add it to the list.

Nams (cons

(list

(vlax-get oProj "Name")
(vlax-get oProj "FileName")
) Nams) N (1- N)))

)

:return list of names
Nams

);defun

;CODING ENDS HERE

You should have a list of Projects in the variable "Nams".

And, would you like to Unload all Projects within your drawing? Try this :

;CODING STARTS HERE

(defun C:UNLOADALLVBA (/VBAProjs VBAProj)

(setqg VBAProjs (Gvba))

(foreach VBAProj VBAProjs

(command "_VBAUNLOAD" (cadr VBAPr0j)))

)
;CODING ENDS HERE

Visual Lisp - Directories and Files

Using plain old AutoLisp, we really only have two functions dealing with files and directories namely, the
(findfile) function, and the (getfiled) function. Both of these functions are useful but limited in there
scope.

Visual Lisp has introduced a whole host of new functions specifically designed to use with files and
directories. In this tutorial we're going to have a look at a few of them. Firstly, we'll have a look at
probably the most powerful Visual Lisp function for dealing with files and directories, the (vI-directory-
files) function. Fire up AutoCAD, open the Visual Lisp Editor, then type this at the console prompt :

_$ (vl-load-com)

_$ (vl-directory-files)

(".""." "X3426.dwg" "addshort.dvb" "ADMENU.DVB" "afralispURL.dvb" "afraLOGO.dwg" "another-
dump.Isp" "area.zip" "arrowkeyview.dvb" "ATTAB.DCL" "ATTAB.DWG" "ATTAB.LSP")

This will return a list containing every file and sub-directory within your current directory.
Let's have a look at the syntax of (vl-directory-files) and a few other Visual Lisp File/Directory functions.

[
VL-DIRECTORY-FILES
Lists all files in a given directory

(vl-directory-files [directory pattern directories])
Arguments :

directory

[A string naming the directory to collect files for; if nil or absent, vl-directory-files uses the current
directory.

pattern

[A string containing a DOS pattern for the file name; if nil or absent, vI-directory-files assumes

Wk M

directories

An integer that indicates whether the returned list should include directory names. Specify one of
the following :

-1 List directories only.
0 List files and directories (the default).
1 Listfiles only.

Return Values

B Alistof file and path names, or nil, if no files match the specified pattern.

Let's try it again, but this time with some arguments. Type this at the console prompt :

_$ (vl-directory-files "d:/drawings" "*.dwg")

("X3426.dwg" "afraLOGO.dwg" "ATTAB.DWG" "Drawingl.dwg" "Drawing4.dwg" "is handsome.dwg"
"tem5.dwg" "X3374.dwg" "X3375.dwg" "dwgdata.dwg" "Drawing2.dwg" "X3359.dwg" "tblock.dwg"
"kenny.dwg" "Adaptor.dwg" "Drg-1.dwg" "drg-2.dwg" "attab-vl.dwg" "matlist.dwg")

This will return a list of all drawings residing in the directory "d:/drawings".
Let's try something else:

_$ (vl-directory-files "d:/drawings" "*.Isp")
("another-dump.Isp” "ATTAB.LSP" "BAREA.LSP" "bick.Isp" "acad.lsp" "mted.Isp" "circle-react.Isp"
"clay.Isp" "DC-Delete.Isp" "endPlot.Isp")

This, of course, will return a list of all AutoLisp files.
Now let's get clever. Let's try and get a list of just the subdirectories :

_$ (vi-directory-files "d:/drawings1" nil -1)
("." ".." "Purge-Export" "Office" "3D" "Extext" "VBA" "DrawingExfiles")

Easy hey. Now let's have alook at some of the other Visual Lisp file handling functions.

|
VL-FILE-COPY
Copies or appends the contents of one file to another file

(vI-file-copy source-file destination-file [append])

Copy or append the contents of one file to another file. The vi-file-copy function will not overwrite an
existing file, only append to it.

Arguments :

source-file

A string naming the file to be copied. If you do not specify a full path name, vi-file-copy looks in
the AutoCAD start-up directory.

destination-file

A string naming the destination file. If you do not specify a path name, vl-file-copy writes to the
AutoCAD start-up directory.

append

[!fspecified and not nil, source-file is appended to destination-file (that is, copied to the end of the
destination file).

Return Values

[l Aninteger, if the copy was successful, otherwise nil.
Some typical reasons for returning nil are:

source-file is not readable

source-file is a directory

append? is absent or nil and destination-file exists

destination-file cannot be opened for output (that is, it is an illegal file name or a write-protected
file)

source-file is the same as destination-file

Examples
Copy autoexec.bat to newauto.bat:

_$ (vI-file-copy "c:/autoexec.bat
1417

c:/newauto.bat")

Copy test.bat to newauto.bat:

_$ (vl-file-copy "c:/test.bat" "c:/newauto.bat")
nil

The copy fails because newauto.bat already exists, and the append argument was not specified.
Repeat the previous command, but specify append:

_$ (vi-file-copy "c:/test.bat" "c:/newauto.bat" T)
185

The copy is successful because T was specified for the append argument.

m
VL-FILE-DELETE
Deletes a file

(vI-file-delete filename)
Arguments :

filename

A string containing the name of the file to be deleted. If you do not specify a full path name, vl-file-
delete searches the AutoCAD start-up directory.

Return Values
B T, if successful, nil if delete failed.

Examples
Delete newauto.bat:

_$ (vl-file-delete "newauto.bat")
nil

Nothing was deleted because there is no newauto.bat file in the AutoCAD start-up directory.
Delete the newauto.bat file in the c:\ directory:

_$ (vl-file-delete "c:/newauto.bat")
T

The delete was successful because the full path name identified an existing file.

=
VL-FILE-DIRECTORY-P
Determines if a file name refers to a directory

(vI-file-directory-p filename)
Arguments :

filename

A string containing a file name. If you do not specify a full path name, vl-file-directory-p searches
only the AutoCAD start-up directory.

Return Values
[T iffilenameis the name of a directory, nil if it is not.

Examples

_$ (vl-file-directory-p "sample")
-

_$ (vi-file-directory-p "yinyang")
nil

_$ (vl-file-directory-p "c:/program files/acad2000")
T

_$ (vl-file-directory-p "c:/program files/acad2000/vlisp/yinyang.lsp")
nil

VL-FILE-RENAME
Renames a file

(vl-file-rename old-filename new-filename)
Arguments :

old-filename

[l A string containing the name of the file you want to rename. If you do not specify a full path
name, vi-file-rename looks in the AutoCAD start-up directory.

new-filename

A string containing the new name to be assigned to the file.
NOTE If you do not specify a path name, vi-file-rename writes the renamed file to the AutoCAD
start-up directory.

Return Values
@ T ifrenaming completed successfully, nil if renaming failed.

Examples

_$ (vI-file-rename "c:/newauto.bat
T

c:/myauto.bat")

VL-FILE-SYSTIME
Returns last modification time of the specified file

(vI-file-systime filename)
Arguments :

filename
[l A string containing the name of the file to be checked.
Return Values

[l A listcontaining the modification date and time, or nil, if the file is not found.
The list returned contains the following elements :

year
month
day-of-week
day-of-month
hours
minutes
seconds

Note that Monday is day 1 of day-of-week, Tuesday is day 2, etc.
Examples

_$ (vl-file-systime "c:/program files/acad2000/sample/visuallisp/yinyang.lsp")
(1998 438 10 6 52 0)

The returned value shows that the file was last modified in 1998, in the 4th month of the year (April), the
3rd day of the week (Wednesday), on the 10th day of the month, at 6:52:0.

VL-FILENAME-BASE

Returns the name of afile, after stripping out the directory path and extension
(vl-filename-base filename)
Arguments :

filename

[A string containing a file name. The vi-filename-base function does not check to see if the file
exists.

Return Values

[l A string containing filename in uppercase, with any directory and extension stripped from the
name.

Examples

_$ (vl-filename-base "c:\\acadwin\\acad.exe")
"ACAD"

_$ (vl-filename-base "c:\\acadwin")
"ACADWIN"

VL-FILENAME-DIRECTORY

Returns the directory path of a file, after stripping out the name and extension
(vl-filename-directory filename)
Arguments :

filename

[A string containing a complete file name, including the path. The vi-filename-directory function
does not check to see if the specified file exists. Slashes (/) and backslashes (\) are accepted as
directory delimiters.

Return Values
[A string containing the directory portion of filename, in uppercase.

Examples

_$ (vl-filename-directory "c:\\acadwin\\acad.exe")
"C:\ACADWIN"

_$ (vl-filename-directory "acad.exe")

VL-FILENAME-EXTENSION

Returns the extension from a file name, after stripping out the rest of the name

(vl-filename-extension filename)
Arguments :

filename

[A string containing a file name, including the extension. The vi-filename-extension function does
not check to see if the specified file exists.

Return Values

[A string containing the extension of filename. The returned string starts with a period (.) and is in
uppercase. If filename does not contain an extension, vi-filename-extension returns nil.

Examples

_$ (vl-filename-extension "c:\\acadwin\\acad.exe")
".EXE"

_$ (vl-filename-extension "c:\\acadwin\\acad")
nil

VL-FILENAME-MAKETEMP

Calculates a unique file name to be used for a temporary file
(vl-filename-mktemp [pattern directory extension])
Arguments :

pattern
B A string containing a file name pattern; if nil or absent, vl-filename-mktemp uses "$VL~~".
directory

[l A string naming the directory for temporary files; if nil or absent, vi-filename-mktemp chooses a
directory in the following order:

The directory specified in pattern, if any.

The directory specified in the TMP environment variable.
The directory specified in the TEMP environment variable.
The current directory.

extension

A string naming the extension to be assigned to the file; if nil or absent, vl-filename-mktemp uses
the extension part of pattern (which may be an empty string).

Return Values

[A string containing a file name, in the following format :
directory\base<XXX><.extension>

where:

base is up to 5 characters, taken from pattern

XXX is a 3 character unique combination

All file names generated by vi-filename-mktemp during a VLISP session are deleted when you exit
VLISP.

Examples

_$ (vl-filename-mktemp)
"C:\TMP\\$VL~~004"

_$ (vl-filename-mktemp "myapp.del")
"C:\TMP\MYAPPOO5.DEL"

_$ (vl-filename-mktemp "c:\\acadwin\\myapp.del")
"C:\ACADWINWMYAPPOO6.DEL"

_$ (vI-filename-mktemp "c:\\acadwin\\myapp.del")
"C:\ACADWIN\MYAPPOO7.DEL"

$ (vI-filename-mktemp "myapp

R c:\\acadwin")
"C:\ACADWIN\MYAPP008"

_$ (vl-filename-mktemp "myapp" "c:\\acadwin" ".del")
"C:\ACADWIN\MYAPPOOA.DEL"

OK, enough of this theoretical nonsense! Let's do something practical.
How do you fancy creating your own personalised file list box?
You do? Great! I'll see you on the next page.

Right, are you ready to create your own file list box? OK here we go. First I'll give you a wee peek at what
our dialog will look like :

AfraLisp File Dialog T X
d:/drawingz
Select Directory : Select Files
- Adaptor .dug -
ara afralL0G0.dug
BHP attab-vl .dug
dcl ATTAB.DWG
DUB Drawingi.dwg i
EXCHANGE Drawing?2 .dug
slideman Drawingd.dwg
TIPS Drg-1.dwg
drg-2.dug *
Directories = 8 Filez =13
Select File Type il
Cancel |

Looks good hey!
To run this function you must pass it two arguments :

A string containing a directory path.
| Alistoffile types.

Syntax : (fileselect [directory file_types])
Example : (fileselect "d:/drawings” '("*.dwg" "*.Isp" "*.dvb™))
Return : A list of selected files.

Oh, by the way, you CAN select multiple files.
[

The first thing we need to do is write a bit of DCL to create our File Dialog. Copy and paste this into
Notepad and save it as "AfraFile.dcl".

FILES : dialog {
label="AfraLisp File Dialog";

s text {
key="CDIR";
}

s row {

s list_box {
key="DIR";

label="Select Directory :";
width=25;
fixed_width_font =true;

}

s list_box {

key="FIL";
label="Select Files :";
width = 30;

tabs ="20 31 40";
multiple_select = true;
fixed_width_font =true;

}
}

s row {

s text {
key="DIRS";
}

s text {
key="FILS";
}

}

: popup_list{

key="EXT";

label="Select File Type :";
fixed_width_font = true;

}

ok _cancel;

And now the AutoLisp Coding. Save this as AfraFile.lIsp :

;CODING STARTS HERE
;Syntax : (fileselect "d:/drawings" '("*.dwg" "*.Isp" "*.dvb"))

(defun FileSelect (Dir Pat)
(setqg DH (load_dialog "afrafiles™))
(if (and DH (new_dialog "FILES" DH))
(progn

(setq iExt 0)
(Refresh_Display)
(start_list "EXT")
(mapcar 'add_list Pat)
(end_list)

(action_tile "DIR" "(new_dir $value)")
(action_tile "EXT" "(new_mask $value)")

(action_tile "FIL" "(picked $value)")

,(if (= (start_dialog) 0)
(setq File_List nil)
)
(unload_dialog DH)
)
)
File_List
)

(start_list "FIL")
(end_list)
(set_tile "CDIR" "Working...")
(setq FL (VL-Directory-Files
;Dir Pat 1)
Dir (nth iExt Pat) 1)
DR (VL-Directory-Files
Dir nil -1)
FL (VL-Sort FL 'str_compare)
DR (VL-Sort DR 'str_compare)
)
(start_list "DIR")
(mapcar 'add_list DR)
(end_list)
(start_list "FIL")
(if Show_the_details
(mapcar
‘(lambda (F)
(setq Dt (VL-File-SysTime
(strcat Dir F))
F1 (if Dt
(strcat
F
e
(itoa_f (nth 1 Dt) 2)
"
(itoa_f (nth 3 Dt) 2)
e
(itoa_f (nth O Dt) 4)
e
(itoa_f (nth 4 Dt) 2)

(itoa_f (nth 5 D) 2)

(itoa_f (nth 6 Dt) 2)
)

(strcat F "\t\t")

)

Sz (VL-File-Size (strcat Dir F))
F1 (strcat

F1

"\t"

(rtos Sz 2 0))

)
(add_list F1))

FL)
(mapcar ‘add_list FL)
)
(end_list)
(set_tile "DIRS"
(strcat
"Directories ="
(itoa (length DR))))
(set_tile "FILS"
(strcat
"Files ="
(itoa (length FL))))
(set_tile "CDIR" Dir)
)

(defun New_Dir (Pth)
(setq Pth (nth (atoi Pth) DR))
(cond
((=Pth ".")
nil
)
((=Pth "..") ;;back up a directory
;;remove directory name up one
(setg L (1- (strlen Dir))
Dir (substr Dir 1 L)
)
(while (/= (substr Dir L 1) "/")
(setg L (1-L)))
(setq Dir (substr Dir 1 L))
)
(T
(setq Dir (strcat Dir Pth "/"))
)

)
(Refresh_Display)

;; Call back function to handle new file mask
;; selection by the user.

(defun New_Mask (II)
(setq iExt (atoi 1))
(Refresh_Display)

;; Call back function for saving the selected
;; file list in the variable FILE_LIST.

(defun Picked (val / V)
(setq val (read (strcat "(" val ")"))
File List
(mapcar ‘(lambda (V)
(strcat

Dir

(nth V FL)))
Val)

;; Convert integer to padded ASCII string

(defun Itoa_F (I Digs)
(setq I (itoa 1))
(while (< (strlen 1) Digs)
(setqg I (strcat "0" 1))

(defun Str_Compare (T1 T2)
(< (strcase T1)
(strcase T2)))

(princ)

;CODING ENDS HERE

| just like to thank Bill Kramer from whom | "stole" a lot of this coding from.
(Shush, don't say anything as he doesn't know yet!!!)

Compiling AutoLisp Files

Before we start with various methods of compiling AutoLisp files, let's have a look at the different file
types we'll encounter during this Tutorial :

['sp AutoLisp Program Source file

[dcl Contains definitions of AutoCAD Dialog Boxes

[fas Compiled AutoLisp Program

[VIx Executable Visual Lisp Module

[rrv Defines the files and options used to build a vix module

Each time you load AutoLISP source code, the code is translated into instructions the computer
understands (executable code). The advantage of having source code translated each time you load it is
that you can make a change and immediately try it out. This is useful for quickly testing new code, and
for debugging that code.

Once you are sure your program is working correctly, translating AutoLISP source code each time it
loads is time-consuming. VLISP provides a compiler that generates executable machine code files from
your source files. These executable files are known as FAS files. Because the executable files contain
only machine-readable code, the source code you spent weeks or months developing remains hidden
even if you distribute your program to thousands of users. Even strings and symbol names are
encrypted by the VLISP file compiler.

VLISP also provides features for packaging more complex AutoLISP applications into VLISP executable
(VLX) files. VLX files can include additional resources files, such as VBA, DCL and TXT files, as well as
compiled AutoLISP code.

So, let's try and give you a digest of what we've just discussed :

[!fyou haveasingle AutoLisp file, compile it as a fas file.
If you have an AutoLisp file with dependencies such as DCL or TXT files, compile it as an
Executable Visual Lisp Module vix file.

Let's start off this Tutorial by compiling a single AutoLisp file.
Copy and paste this into Notepad and save it as "Slot.Isp” :

(defun C SLOT (/ oldsnap diamlngth ptl pt2 pt3 pt4 pt5 pt6)

(setvar "CVDECHO' 0)
(setvar "BLI PMODE" 0)
(setq ol dsnap (getvar "OSMODE"))

(setq diam (getdist "\nSlot Dianeter : ")
I ngth (getdist "\nSlot Length : "))

(while
(setq ptl (getpoint "\nlnsertion point: "))
(setvar "OSMODE" 0)
(setq pt2 (polar pt1 0.0 (/ (- Ingth diam 2.0))
pt3 (polar pt2 (/ pi 2.0) (/ diam4.0))
pt4 (polar pt3 pi (- Ingth diam)

pt5 (polar pt4 (* pi 1.5 (/ diam2.0))
pt6 (polar pt5 0.0 (- Ingth diam))

(command "PLINE" pt3 "W (/ diam2.0) "" pt4
"ARC' pt5 "LINE" pt6 "ARC' "CLCSE")
(setvar "OSMODE" ol dsnap)
); while
(princ)
) ; def un
(princ)

Now fire up AutoCAD and open the Visual Lisp Editor. Type this at the console prompt :

_$ (vlisp-compile 'st "slot.Isp")
T

Have look at the Build Output window :

; (COMPILE-FILES st (D:/drawings/slot.Isp))
[Analyzing file "D:/drawings/slot.Isp"]

[COMPILING D:/drawings/slot.Isp]
C:SLOT

[FASDUMPING object format -> "D:/drawings/slot.fas"]
; Compilation complete.

During compilation, the compiler prints function names and various messages about each stage of
compilation. The first stage is syntax and lexical checking of the source code. If the compiler encounters
errors, it issues messages and halts the compilation process. The compiler issues warnings if it
encounters expressions it considers dangerous, such as redefining existing AutoLISP functions or
assigning new values to protected symbols. If the compiler displays warning or error messages, you can
view and edit the source code that caused these messages by double-clicking on the message in the
Build Output window.

If compilation is successful, as in the example above, the Build Output window displays the name of the
compiled output file. This file should be located in the same directory as your AutoLisp source file. Let's
have a look at the syntax for (vlisp-compile) :

VLISP-COMPILE

Compiles AutoLISP source code into a FAS file
(vlisp-compile 'mode filename [out-filename])
NOTE The Visual LISP IDE must be open in order for vlisp-compile to work.

Arguments :

B mode

The compiler mode, which can be one of the following symbols:
st Standard build mode

Ism Optimize and link indirectly

Isa Optimize and link directly

B filename

A string identifying the AutoLISP source file. If the source file is in the AutoCAD Support File
Search Path, you can omit the path when specifying the file name. If you omit the file extension,
Isp is assumed.

B out-filename

A string identifying the compiled output file. If you do not specify an output file, vlisp-compile
names the output with the same name as the input file, but replaces the extension with .fas.
Note that if you specify an output file name but do not specify a path name for either the input or
the output file, vlisp-compile places the output file in the AutoCAD install directory.

Return Values :
@ T if compilation is successful, nil otherwise.

Examples

Assuming that slot.Isp resides in a directory that is in the AutoCAD Support File Search Path, the
following command compiles this program :

_$ (vlisp-compile 'st "slot.Isp")
T

The output file is named slot.fas and resides in the same directory as the source file.
The following command compiles slot.Isp and names the output file Slot-1.fas :

(vlisp-compile 'st "slot.Isp” "slot-1.fas")

Note that the output file from the previous command resides in the AutoCAD install directory, not the
directory where slot.Isp resides. The following command compiles slot.Isp and directs the output file to
the c:\my documents directory :

(vlisp-compile 'st "slot.Isp” "c:/my documents/slot-1.fas)
This last example identifies the full path of the file to be compiled :
(vlisp-compile 'st "c:/program files/acad2000/Sample/slot.Isp™)

The output file from this command is named slot.fas and resides in the same directory as the input file.
=

Next, we'll be having a look at creating compiled AutoLisp files using multiple AutoLisp files and
dependency files such as DCL files.

Visual Lisp provides you with the ability to create a single, standalone executable module for your
application. This module incorporates all your application's compiled files, and can include DCL, DVB,
and other files that your application may need. Executable Visual Lisp modules are known as VLX files,
and are stored in files named with a .vIx extension.

A Make Application wizard guides you through the application building process in Visual Lisp. The result
of this process is a Make file, which is often referred to by its file extension, .prv. The Make file contains

all the instructions Visual Lisp needs to build the application executable.

To test this out, I've provided an AutoLisp Application that consists of an AutoLisp file, and a DCL file.
From these 2 files we will compile one vix executable module. (Just click here to download the source

files). Unzip these files and save them in any directory within your AutoCAD Support Path.

OK, fire up AutoCAD and open the Visual Lisp Editor. Now select "Files" - "Make Application” - "New
Application" from the pulldown menu :

u&;\fisual LISP for AutoCAD <Drawingl.dwg>

|Ei|E Edt Search Wiew Project Debug Tool: Window Help

Mew File Chel-M - | i JJ“ ?-EB Il:ar

Open File... Chrl-0

RBeopen » f:]l JJ ,"r'{': %ﬂ | ‘1.{1 L) %
Sanve |l e e

Print... Ctrl-P

Frint Setup...

Mew Application \Wizard...
E sisting &pplication Properties. .
tMake Application. .

Rebuild &pplication...

Load File... Crl-5 hift-L

Toggle Congole Log...

E xit

This dialog will appear :

file:///C|/book1/zip1/vl-comp.zip

u&;Wizard Mode ! : EI

— Chooze Wizard Mode

You may selelct the zimple or expert

wizard application mode. The simple e ;
mode prompts you zolely for the LISP g il
gourze files o include, and the
application name to create. The
expert mode should be zelected if you
heed to include additional resource
files [zuch az .decl or .dvb files] ar if
wou need to madify the default
compilation options.

< Back Mest » Cancel

Select "Expert" mode as we want to compile multiple file types, and then press "Next" :

UL Application Directory e : 3 x|
— Chooze Application Location—————— —Application Location
Select the location and name far paur ID:.-"u:Irawings
application. |n addition ta the compiled
application which iz given a vk file Browse. . |
extenzion, an application make file
[.prw] iz created, containing your i
zelections from the wizard. Thiz iz used —Application Marme
far zubsequent rebuilds of the Refl
application. &
= Target File
| ReflvLx
|
|]
< Back MNest » Cancel

Enter the path to the directory you would like to store the files in. Select the same directory that you
stored the AutoLisp source files.

Then, give your application a name. It does not have to be the same as your AutoLisp source file, but to
spare any confusion, let's keep it the same.

The select "Next" :

I'-___J'!;.|E'|.|:|n|:|||it:atin:nn Options

— Select Application Optionz

Ak thiz step, select if your application
will rur within the default namespace
[i.e., wour application function names
and global wariable names are part of
the primary LISP environment within
gach drawing.] Choozing a separate
hameszpace means that only selected
funchionz from your application will be
made publicly awailable from the
primary LISP environment.

¥ Actives Suppart

[Separate Mamespace

¢ Back

MNest »

No, we do not want our application to run in a separate namespace.

Just select "Next" :

[___Jé;LISF Filez to Include

— Select Files ta Include

: _ ; zp refl.lzp
Select the LISP files to include in
wour application. 'ou can zelect
AutoLlSP zource files [zp]. Up
n:u:umpile::l_ LISF_' files [._fas]; ar Wizual
LISF project files [.pril. or any P
cormbination.
B ottom
Lizp zource files |
Bemonve
| |
¢ Back Mest > Cancel

Now we need to select our AutoLisp source file. Select "refl.Isp" then press "Next" :

uﬁﬂesuume Files to Include ! il

— Select &dditional Besource Files———— EiNIR Rl

Select additional rezource files, such as
Wizual Baszic for Application files [dvb] or
Dialog Contral Language files [decl].
These filez are ausiliary files for your
application and may be loaded from paur
prograr.

| DCL files =

Remove |

|
< Back | Mt | Cancel |

In this dialog, we select and add any dependency files that our application needs to run correctly. Select
"refl.dcl" and then "Next" :

u&;.ﬂnpplicatiun Compilation Options : x|

— Select Application Compilation Optiong —

{* Standard

Choose the campilation maode far yaur e !
P y ™ Dptimize and Link

application. Standard mode is zufficient
for mozt applicationz. The optimize
mode can reduce your executable file
zize by eliminating internal function and
vanable symbaolz. The link mode can
ophimize pour program's zpeed by
substituting references to functions'
names with a direct references to the
function'z compiled body.

¢ Back | Cancel |

No need to confuse you now, just go with the "Standard" option. Select "Next" :

uﬁﬂeview Selections / Builld Application -” : |

— Heview Selections and Build
At thiz final step, you can review v Build &pplication

wour zelections and complete the
process by building the application.
YWizual LISP will zawve your zettings
iti an application make file [pre].
Y'ou can subzequently rebuild or
maodify the application uzing the
application make file.

< Back Einizh Cancel

OK, that's us about done. To build your compiled application, just select "Finish".

VLISP executes instructions in a Make file to build an application. Output messages from this process
appear in two VLISP windows: the Build Output window and the Console window. The Build Output
window contains messages relating to any compilation of AutoLISP source code into .fas files. In a
successful compile, the output looks like the following :

; (COMPILE-FILES st (D:/drawings/refl.Isp))
[Analyzing file "D:/drawings/refl.Isp"]

[COMPILING D:/drawings/refl.Isp]

:C:REFL
;CCC

' MKLIST
.:SPINBAR
INITERR
S TRAP
RESET

[FASDUMPING object format -> "D:/drawings/refl.fas"]
; Compilation complete.

The compiler messages identify the following items:

The name and directory path of the source files being compiled.
The functions defined in the source file. Seven functions are identified: C:REFL, CCC, MKLIST,
SPINBAR, INITERR, TRAP and RESET.

[Thename and path of the output .fas files.

The VLISP Console window displays messages relating to the creation of the application executable, the
Vix file. If the Make Application process succeeds, the Console window displays the path and file name
of the .vIx, as in the following example:

VLX-Application packed D:/drawings/refl.VLX
$

Have a look in the directory where you stored the source files. You should now have 5 "refl" files :

[reflIsp - AutoLisp source file

[refl.dcl-DCL source file

[refl.fas - Compiled AutoLisp Program
[refl.vix - Executable Visual Lisp Module
[refl.prv - Application Make file.

You can now distribute "refl.vix" as a compiled application.

Note!!! You CANNOT edit a vix file. These 5 files need to be kept in a safe location if you intend to edit or
revise your vix file.

Loading Compiled AutoLisp Applications :
Loading compiled applications is exactly the same as for normal AutoLisp functions :
(load "refl")

Here's a couple of things to keep in mind :

If you do not specify a file extension, load first looks for a file with the name you specified (for example,
"refl"), and an extension of .vIx. If no .vIx file is found, load searches next for a .fas file, and finally, if no
.fas file is found, load searches for a .Isp file.

Tip of the Day :

To aid you in the process of maintaining multiple-file applications, VLISP provides a construct called a
Project. A VLISP Project contains a list of AutoLISP source files, and a set of rules on how to compile the
files.

Using the Project definition, VLISP can do the following :

[Check which .Isp files in your application have changed, and automatically recompile only the
modified files. This procedure is known as a Make procedure.

[Simplify access to source files by listing all source files associated with a project, making them
accessible with a single-click.

[Help you find code fragments by searching for strings when you do not know which source files
contain the text you're looking for. VLISP limits the search to files included in your project.

[Optimize compiled code by directly linking the corresponding parts of multiple source files.

Have a look at the Visual Lisp Help for further information on Projects.

VLAX Enumeration Constants

Const ant

vl ax-fal se

vl ax-nul |

vl ax-true

vl ax- vbAbort

vl ax- vbAbort Retryl gnore
vl ax- vbAppl i cat i onMbdal
vl ax- vbAr chi ve

vl ax- vbArray

vl ax- vbBool ean

vl ax- vbCancel

vl ax-vbCriti cal

vl ax- vbCurrency

vl ax- vbDat aCbj ect

vl ax-vbDat e

vl ax- vbDef aul t Butt onl
vl ax- vbDef aul t Butt on2
vl ax- vbDef aul t Butt on3
vl ax-vbDi rectory

vl ax- vbDoubl e

vl ax- vbEnmpt y

vl ax- vbErr or

vl ax- vbExcl amat i on

vl ax- vbHi dden

vl ax- vbHi r agana

vl ax-vbl gnore

vl ax-vbl nfornati on

vl ax- vbl nt eger

vl ax- vbKat akana

vl ax- vbLong

vl ax- vbLower Case

vl ax- vbNar r ow

vl ax- vbNo

vl ax- vbNor mal

vl ax- vbNul |

vl ax- vbQbj ect

vl ax- vbOK

vl ax- vbOKCancel

vl ax- vbOKOnl y

vl ax- vbPr oper Case

vl ax- vbQuesti on

vl ax- vbReadOnl y

vl ax-vbRetry

vl ax- vbRet ryCance

Synbol Val ue

vl ax-fal se
vl ax-nul |
vl ax-true
3

2

0

32

8192

11

2

16

6

13

-

0

256

512

OOPRrFRPWWORLRPFPOFLPONOWLONW

vl ax- vbSi ngl e

vl ax-vbStri ng

vl ax- vbSyst em

vl ax- vbSyst enivbda
vl ax- vbUpper Case
vl ax- vbVari ant

vl ax- vbVol une

vl ax- vbW de

vl ax- vbYes

vl ax- vbYesNo

vl ax- vbYesNoCancel

o
O
(o)}

w-bm-hmlsl—‘-b-hmb

Thanks to David Stein from whom | "borrowed" this listing.

Visual Lisp and Polylines

Dealing with polylines using straight forward AutoLisp can be quite a pain. But, believe it or not, using
Visual Lisp they are a breeze to modify and manipulate. Let's have a look shall we?

First of all, fire up AutoCAD and draw a polyline but do not close it :

Now, type the following in the Visual Lisp editor :

_$ (vl-load-com)

_$ (setq theobj (car (entsel "\nSelect a Polyline: ")))
<Entity name: 14e35f8>

_$ (setq theobj (vlax-ename->vla-object theobj))
#<VLA-OBJECT IAcadLWPolyline 0leal6d4>

_$ (vlax-dump-object theobj T)
; IAcadLWPolyline: AutoCAD Lightweight Polyline Interface

; Property values:
; Application (RO) = #<VLA-OBJECT IAcadApplication 00ac8928>
; Area (RO) = 16178.7

; Closed =0

: Color = 256

; ConstantWidth = 0.0

: Coordinate = ...Indexed contents not shown...

; Coordinates = (540.98 557.623 640.815 449.587 453.624 403.879 ...)
; Document (RO) = #<VLA-OBJECT IAcadDocument 00ec89b4>
; Elevation = 0.0

; Handle (RO) = "957"

; HasExtensionDictionary (RO) =0

; Hyperlinks (RO) = #<VLA-OBJECT IAcadHyperlinks Olealec4>
; Layer ="7"

; Linetype ="BYLAYER"

; LinetypeGeneration =0

; LinetypeScale = 1.0

; Lineweight = -1

; Normal = (0.0 0.0 1.0)

; ObjectID (RO) = 21902840

; ObjectName (RO) = "AcDbPolyline"

; OwnerID (RO) = 21901504

; PlotStyleName ="ByLayer"

; Thickness = 0.0

; Visible = -1

; Methods supported:

; AddVertex (2)

; ArrayPolar (3)

; ArrayRectangular (6)
; Copy ()

; Delete ()

; Explode ()

; GetBoundingBox (2)
; GetBulge (1)

; GetExtensionDictionary ()
; GetWidth (3)

; GetXData (3)

; Highlight (1)

; IntersectWith (2)

; Mirror (2)

; Mirror3D (3)

; Move (2)

; Offset (1)

; Rotate (2)

; Rotate3D (3)

; ScaleEntity (2)

; SetBulge (2)

; Setwidth (3)

; SetXData (2)

; TransformBy (1)

; Update ()

-~

This is a listing of all the Properties and Methods belonging to our polyline object.
Let's close the polyline:

_$ (vla-put-closed theobj :vlax-true)
nil

Now let's change the width of all the segments :

_$ (vla-put-ConstantWidth theobj 2.0)
nil

Let's "bulge" the third segment :

_$ (vla-setbulge theobj 2 0.5)
nil

Let's change the starting and ending width of the fourth segment :

_$ (vla-setwidth theobj 3 10.0 0.0)
nil

Let's get the area :

_$ (vla-get-area theobj)
14505.9

Now, we'll make it invisible :

_$ (vla-put-visible theobj :vlax-false)
nil

See it's gone. Let's bring it back :

_$ (vla-put-visible theobj :vlax-true)
nil

Now we'll explode it :

_$ (vla-explode theobj)
#<variant 8201 ...>

And delete the original :

_$ (vla-delete theobj)
nil

We are left with an exploded copy of our polyline :

Right, let's have a look at extracting some information from a polyline.
This program will extract the X and Y coordinates from any polyline.

(prompt "\nType \"VL-POLY\" to run........ ")
(defun c:vl-poly (/theobj thelist n xval yval fname fn)

;load the visual lisp extensions
(vl-load-com)

;get the entity and entity name
(setq theobj (car (entsel "\nSelect a Polyline: ")))

;convert to vl object
(setq theobj (vlax-ename->vla-object theobj))

;check if it's a polyline
(if (= (vlax-get-property theobj 'ObjectName) "AcDbPolyline")

;if it is, do the following
(progn

;retrieve the coordinates
(setq thelist (vlax-get-property theobj ‘coordinates))

;convert to a list
(setq thelist (vlax-safearray->list (variant-value thelist)))

:zero the counter
(setqg n 0)

;create a text file
(setq fname "coord.txt")

;open it to write
(setq fn (open fname "w"))

;write the header
(write-line "PolyLine X and Y Coordinates" fn)

:underline the header
(W r | te - | | n e W kkkkkkkkkhkhhhkhhkhkhkkkkkhkkhkhkhhhkhhhhkkkkhkkhiiiikikxn f n)

;start the loop
(repeat (/ (length thelist) 2)

;get the x coordinate
(setq xval (rtos (nth n thelist)))

:increase the counter
(setg n (1+n))

;get the y coordinate
(setq yval (rtos (nth n thelist)))

:write the x coordinate to the file
(write-line (strcat "X-Value : " xval) fn)

;write the x coordinate to the file
(write-line (strcat "Y-Value : " yval) fn)

;add a seperator
(write-line "--- " fn)

:increase the counter
(setg n (1+n))

);repeat

:close the file
(close fn)

);progn

;it's not a polyline, inform the user
(alert "This is not a Polyline!! - Please try again.")

);if
(princ)
);defun

;clean loading
(princ)

;End of VL-POLY.LSP

Save this as "VL-Poly.Isp" and then load and run it. Select any polyline.

The X and Y coordinates of each vertex will be output and written to a file named "Coord.txt"
It should look something like this :

PolyLine X and Y Coordinates
kkkkkkkkkkkkkkkkhkkhkkkkhkhkkkkhhkkkkhkhkkkhkhkkkkikk
X-Value : 478.6
Y-Value : 622

X-Value : 815.5
Y-Value : 349.9

X-Value : 636.7
Y-Value : 291.7

X-Value : 586.7
Y-Value : 437.1

X-Value : 516
Y-Value : 310.4

X-Value : 349.6
Y-Value : 304.2

In the next section, we'll have a look at creating polylines and adding one or two "bulges".

This is the VBA method to create a lightweight polyline from a list of vertices.

RetVal = object.AddLightweightPolyline(VerticesList)

[Object: ModelSpace Collection, PaperSpace Collection, Block.
The object or objects this method applies to.
[VerticesList : Variant (array of doubles)

The array of 2D OCS coordinates specifying the vertices of the polyline. At least two points (four
elements) are required for constructing a lightweight polyline. The array size must be a multiple of 2.

[RetVval: LightweightPolyline object.
The newly created LightweightPolyline object.

In Visual Lisp, the syntax would be as follows :
(vla-addLightweightPolyline Object VerticesList)

and would return RetVal.

Let's try this out. First we need a reference to Model Space :

_$ (setqg mspace (vla-get-modelSpace (vla-get-activeDocument (vlax-get-acad-object))))
#<VLA-OBJECT IAcadModelSpace 01ea5064>

Get the first point :

_$ (setq ptl (getpoint))
(424.505 252.213 0.0)

Extract the X and Y coordinates

_$ (setq ptl (list (car ptl) (cadr ptl)))
(424.505 252.213)

And now the second point :

_$ (setq pt2 (getpoint))
(767.689 518.148 0.0)

Extract the X and Y coordinates :

_$ (setq pt2 (list (car pt2) (cadr pt2)))
(767.689 518.148)

Join the the two lists together :

_$ (setq ptl (append ptl pt2))
(424.505 252.213 767.689 518.148)

Construct a 4 element safearray :

_$ (setq anarray (vlax-make-safearray vlax-vbDouble '(0 . 3)))
#<safearray...>

Fill it with our point X and Y values :

_$ (vlax-safearray-fill anarray ptl)
#<safearray...>

Draw the polyline :

_$ (setq myobj (vla-addLightweightPolyline mspace anarray))
#<VLA-OBJECT IAcadLWPolyline 01ea5914>

Let's now have a look how we could apply this to a practical example :

; CODI NG STARTS HERE
(pronmpt "\ nType \"VL-Steel\" to run...... ")

;set up default rotation angle
(if (=rot nil) (setqg rot 0))

;define the function and declare all |ocal variables
(defun C VL-Steel (/ ptlist oldsnap ol decho ol dblip
acaddoc util nspace nanes sizes dcl _id siza userclick
dlist HBT1 T2 RL IP IPA Pl ptlisp tnp nyobj fname
fn pts)

'l oad VL functions
(vl -1 oad-com

;obtain reference to the Active Docunent
(setq acaddoc (vl a-get-activeDocunent (vl ax-get-acad-object)))

;obtain reference to Utilities
(setq util (vlia-get-utility acaddoc))

;obtain reference to Mddel Space
(setq nspace (vl a-get-nodel Space acaddoc))

;Store system vari abl es
(setq oldsnap (vl a-getvariabl e acaddoc " OSMODE")
ol decho (vl a-getvariabl e acaddoc " CVDECHO')
oldblip (vla-getvariable acaddoc " BLI PMODE")
); setq

;swtch off system vari abl es
(vl a-setvari abl e acaddoc " CVDECHO' 0)
(vl a-setvari abl e acaddoc "BLI PMODE" 0)

create |list of steel sections for the |ist box

(setq names ' ("100x55x8" "120x64x10" "140x73x13" "160x82x16"
"180x91x19" "200x100x22" "203x133x25" "203x133x30" "254x146x31"
"254x146x37" "254x146x43"))

rcreate |ist of steel section val ues

(setq sizes '((100.0 55.0 4.1 5.7 7.0)
(120.0 64.0 4.4 6.3 7.0) (140.0 73.0 4.7 6.9 7.0)
(160.0 82.0 5.0 7.4 9.0) (180.0 91.0 5.3 8.0 9.0)

(200.0 100.0 5.6 8.5 12.0) (203.2 133.4 5.8 7.8 7.6)
(206.8 133.8 6.3 9.6 7.6) (251.5 146.1 6.1 8.6 7.6)
(256.0 146.4 6.4 10.9 7.6) (259.6 147.3 7.3 12.7 7.6)))

;construct the dialog
(create_dial og)

;1 oad the dial og
(setq dcl __id (Il oad_dial og fnane))
(if (not (new. dial og "ubeant dcl _id))
(exit)
)

;setup the list box
(start _list "sel ections")
(mapcar 'add _|ist nanes)
(end_Iist)

;default rotation angle
(set tile "rot" (rtos rot))

;setup the Cancel button
(action_tile
"cancel "
"(done_di al og) (setq userclick nil)"

)

;setup the OK button
(action_tile
"accept”
(strcat
“(progn (setq siza (atof (get _tile \"selections\")))
(setq rot (atof (get_tile \"rot\")))"
“(done_di alog) (setq userclick T))")

)

; di splay the dial og
(start_dial og)

;unl oad the dial og
(unl oad_di al og dcl _id)

;del ete the tenp DCL file
(vl-file-delete fnane)

i f the OK button was sel ect ed
(if userclick

;do the foll ow ng
(progn

‘retrieve the steel section val ues
(setq dlist (nth (fix siza) sizes))

; pl ace theminto vari abl es
(mapcar 'set '(H B T1 T2 R1) dlist)

;switch on the intersection snap
(vl a-setvari abl e acaddoc " OSMODE" 32)

;get the insertion point
(setq IP (vla-getpoint util nil "\nlnsertion Point

;switch off the snaps
(vl a-setvari abl e acaddoc "OSMODE" 0)

;calculate the points and store themin a |ist
(setq pts (list
(setqg P1 (vla-polarpoint util IP O (/ T1 2)))
(setq P1 (vla-polarpoint util P1 (DTR 90.0)
(/ (- H(+ T2 T2 RL R1)) 2)))
(setq P1 (vla-polarpoint util P1 (DTR 45.0)
(sgrt (* RL RL 2.0))))
(setq P1 (vla-polarpoint util P1 O
(/ (- B(+T1RLRL) 2)))
(setg P1 (vla-polarpoint util P1 (DTR 90.0) T2))
(setq P1 (vl a-polarpoint util P1 (DTR 180.0) B))
(setg P1 (vla-polarpoint util P1 (DITR 270.0) T2))
(setq P1 (vla-polarpoint util P1 O
(/ (- B(+ Tl RLRL) 2)))
(setq P1 (vla-polarpoint util P1 (DITR 315.0)
(sgrt (* RL RL 2.0))))
(setq P1 (vla-polarpoint util P1 (DTR 270.0)
(- H(+ T2 T2 R1 R1))))
(setq P1 (vla-polarpoint util P1 (DITR 225.0)
(sgrt (* RL RL 2.0))))
(setq P1 (vla-polarpoint util P1 (DTR 180.0)
(/ (- B(+T1RLRL) 2)))
(setq P1 (vla-polarpoint util P1 (DTR 270.0) T2))
(setqg P1 (vla-polarpoint util P1 0 B))
(setg P1 (vla-polarpoint util P1 (DITR 90.0) T2))
(setq P1 (vl a-polarpoint util P1 (DTR 180.0)

"))

(/ (- B(+T1RLRL)) 2)))

(setq P1 (vla-polarpoint util P1 (DITR 135.0)
(sgrt (* RL R1 2.0))))

(setq P1 (vla-polarpoint util PO (/ T1 2)))

));setq

;extract only the X and Y val ues of each point |ist
(mapcar

"(lanmbda (pt)

;convert to lists
(setq pt (vlax-safearray->list (variant-value pt)))

; X and Y val ues only
(setq ptlist (cons (list (car pt) (cadr pt)) ptlist))

) ; | anbda
pt s
) ; mapcar

;break the point list up into el enents
(setqg ptlist (apply 'append ptlist))

;Create a safearray to store the elenents
(setq tnp (vl ax- make-saf earray vl ax-vbDoubl e
(cons O (- (vl-list-length ptlist) 1))))

;fill the safearray
(vl ax-safearray-fill tnp ptlist)

draw the steel section
(setq nyobj (vl a-addLi ghtwei ght Pol yline nspace tnp))

;radi us the corners

(vl a-setbul ge myobj 1 0.4142)
(vl a-set bul ge myobj 7 0.4142)
(vl a-set bul ge myobj 9 0.4142)
(vl a-set bul ge myobj 15 0.4142)

;rotate the object
(vla-rotate nyobj ip (dtr rot))

); progn
);if

;reset systemvari abl es
(vl a-setvari abl e acaddoc " OSMODE" ol dsnap)

(vl a-setvari abl e acaddoc " CVDECHO' ol decho)
(vl a-setvari abl e acaddoc "BLI PMODE" ol dbli p)

;rel ease all objects

(vl ax-rel ease-obj ect nspace)
(vl ax-rel ease-object util)
(vl ax-rel ease-obj ect acaddoc)

finish clean
(princ)

) ; def un

(defun create_dial og ()

;Ccreate a tenp DCL file
(setq fnane (vl-fil enanme-nktenp "dcl.dcl"))

;open it to wite
(setq fn (open fnane "w'))

;wite the dialog coding
(wite-line
"ubeam : dial og {
| abel = \"VL-Steel\";
list_box {
| abel = \"Choose Section :\";
key = \"selections\";
al | ow _accept = true;
hei ght = 8;

edi t _box {
| abel = \"Rotation Angle :\";
key = \"rot\";
edit limt =
edit_wdth
}
spacer;
ok cancel ;
ctext _part {
| abel = \"Designed and Created\";
}

“text _part {
| abel = \"by Kenny Ramage\";
}

}totn)

;close the tenp DCL file
(cl ose fn)

4,
4,

;convert degrees to radians
(defun DTR (a)

(* pi (/ a 180))
) ; defun

| oad cl ean
(princ)

; CODI NG ENDS HERE

Save this as "VL-Steel.Isp" and then load and run it. A dialog like this will appear :

Choose Section ;

100%55=8 e
120=E4:10 =
140:73:13

1E0=E2:16

1803113

200=1 00x22 s

Tt "|':|..':||:I

I allam 1 O]

203x133%30 X

Fotation Angle ; 45

Ok Cancel

Desighed and Created
by E.enny Bamage

Choose the section size you would like, choose a rotation angle, select an insertion point, and voila,
your steel section is drawn using a polyline.

"OK Kenny, now we give in. HOW do you calculate a bulge?"
Bulge = TAN (/ Included Angel 4)

In our case Bulge = TAN (/90 4) = 0.4142

Thanks to Stig Madsen for the insight into some of this coding.

Utilities

Whilst looking around the web at other peoples coding, | noticed that nearly everyone still uses the
traditional AutoCAD "get" functions to retrieve entities and values.
In this tutorial, we're going to have a look at the Visual Lisp methods that are available to us to achieve

the same results. We find these methods in the "Utility" object.

Note! Most of the Visual Lisp "get" methods do not flip to the AutoCAD screen from the Visual Lisp
Editor. You need to activate AutoCAD manually and then return to the Visual Lisp Editor.

Let's first have a look at the "standard” way of retrieving points and the drawing a line. Type the
following in the console :

(vl-load-com)

_$ (setq acaddoc (vla-get-activedocument (vlax-get-acad-object)))
#<VLA-OBJECT IAcadDocument 00b94e14>

_$ (setqg mspace (vla-get-modelspace acaddoc))
#<VLA-OBJECT IAcadModelSpace 01e42494>

_$ (setq PT1 (getpoint "\nSpecify First Point: "))
(228.279 430.843 0.0)

_$ (setq PT2 (getpoint "\nSpecify next point: " apt))
(503.866 538.358 0.0)

_$ (setqg myline (vla-addline mspace (vlax-3d-point PT1)(vlax-3d-point PT2)))
#<VLA-OBJECT IAcadLine 00f9da94>

First we referenced Model Space, then we retrieved two points using the (getpoint) function.
We then used the (addline) method to draw our line, firstly converting the two point lists into variant

arrays.

We can though, use Visual Lisp to obtain our two points. Try this :

_$ (setq util (vla-get-utility acaddoc))
#<VLA-OBJECT IAcadUtility 00f9e014>

_$ (setq PT1 (vla-getpoint util nil "\nSpecify First Point : "))
#<variant 8197 ...>

_$ (setq PT2 (vla-getpoint util PT1 "\nSpecify Second Point : "))
#<variant 8197 ...>

$ (setq myline (vla-addline mspace PT1 PT2))
#<VLA-OBJECT IAcadLine 00f9da94>

Because we used the Visual Lisp method to retrieve our points, the values were not returned as list, but
as variant arrays. This means that we don't have to use (vlax-3d-point) to convert our points into variable
arrays.
As you probably noticed from the line

(setq util (vla-get-utility acaddoc))

the (vla-get) method, is a method of the "Utilitity" object.

Let's have a closer look.

Application
(Object)

[------------- Active Document
| (Object)

I

I

|
[— Utility

| (Object)

_$ (vl-load-com)

_$ (setq acaddoc (vla-get-activeDocument (vlax-get-acad-object)))

#<VLA-OBJECT IAcadDocument 00f5db9c>

_$ (setq util (vla-get-utility acaddoc))
#<VLA-OBJECT IAcadUtility 00f9e014>

_$ (vlax-dump-object util T)

; IAcadUtility: A series of methods provided for utility

purposes
; No properties

; Methods supported:

; AngleFromXAXxis (2)

; AngleToReal (2)

; AngleToString (3)

; CreateTypedArray (3)
; DistanceToReal (2)

; GetAngle (2)

; GetCorner (2)

; GetDistance (2)

; GetEntity (3)

; Getlnput ()

; GetInteger (1)

; GetKeyword (1)

; GetOrientation (2)

; GetPoint (2)

; GetReal (1)

; GetRemoteFile (3)

; GetString (2)

; GetSubEntity (5)

; InitializeUserlnput (2)
; IsRemoteFile (2)

; ISURL (1)

; LaunchBrowserDialog (6)
; PolarPoint (3)

; Prompt (1)

; PutRemotekFile (2)

; RealToString (3)

; TranslateCoordinates (5)

Methods Properties

AngleFromxaxis application

angleToReal

AngleToString

CreateTypedarray

DistanceToReal

Getangle
GetCarner

Gethistance

GetEntity
Getlnput

Getlnteger
Getkeyword

GetOrientation
SetPoint
SetReal

SetRemoteFile

GetsString
GetSubEntity

Initializelserlnput

IsRemoteFile
[sURL
LaunchBrowserDialog

PolarPoint

Prompt
PutPemoteFile

EealToString

Prompt
T PutRermoteFile

FealToString

Well, the Utility object doesn't seem to have any Properties, ;
but it's got a treasure trove of Methods. We'll now have a TranslateCoordinates
wee look at a few of them.

First though, let's recap on the way we convert VBA methods to Visual Lisp methods.
Let's look at the VBA "GetDistance" method :

GetDistance Method

Gets the distance from the prompt line or a selected set of points on the screen.
Syntax
RetVal = Object.GetDistance([Point][, Prompt])

[l Object -Utility - The object or objects this method applies to.
[Point- Variant (three-element array of doubles); input-only; optional
The 3D WCS coordinates specifying the base point. If this point is not provided, the user must
input two points.
[Prompt - Variant (string); input-only; optional
The text to display to prompt the user for input.
[RetVal - Variant (double or array of doubles)
The distance from the prompt line or a selected set of points on the screen.

Remarks

AutoCAD pauses for user input of a linear distance and sets the return value to the value of the selected
distance. The Point parameter specifies a base point in WCS coordinates. The Prompt parameter

specifies a string that AutoCAD displays before it pauses. Both Point and Prompt are optional.

The AutoCAD user can specify the distance by entering a number in the current units format. The user
can also set the distance by specifying two locations on the graphics screen. AutoCAD draws a rubber-
band line from the first point to the current crosshair position to help the user visualize the distance. If

the Point parameter is provided, AutoCAD uses this value as the first of the two points.

By default, GetDistance treats Point and the return value as three-dimensional points. A prior call to the
InitializeUserInput method can force Point to be two-dimensional, ensuring that this method returns a
planar distance.

Regardless of the method used to specify the distance or the current linear units (for example, feet and
inches), this method always sets the return value to a double-precision floating-point value.

In Visual Lisp, the syntax would be :
RetVal = (vla-getdistance object [point] [prompt])

Example :

_$ (setq dist (vla-getdistance util nil "\nFirst Point : \n"))
535.428

Sometimes you retrieve a distance value as a string. Here's how you could convert it :

_$ (setq dist "123.45")
"123.45"

_$ (setq dist (vla-DistancetoReal util dist acDecimal))
123.45

Let's have alook at a few more "get" examples :

_$ (setq s (vla-getstring util 0 "Enter String: "))
"Kenny"

Note the "0" argument that disallows spaces.
Let's allow spaces this time :

_$ (setqg s (vla-getstring util 1 "Enter String: "))
"Kenny Ramage is brilliant"

Let's get some Integers :

_$ (setq i (vla-getinteger util "\nEnter an Integer: "))
2

Now enter a real number for example 6.3

"Requires An Integer Value"
"Enter an Integer: "

Try it with a letter such as "A"
Same message.

Now we'll get some real's :

_$ (setqg i (vla-getreal util "\nEnter and Integer: "))
57

Again, try it with a letter such as "C"

"Requires Numeric Value"
"Enter a Real: "

Now for an angle:

_$ (setq a (vla-getangle util nil "\nSelect Angle: "))
0.473349

Let 's give it a base point :

_$ (setq bpt (vla-getpoint util nil "/nSelect Base Point: "))
#<variant 8197 ...>

And use it to "rubber band" :

_$ (setq a (vla-getangle util bpt "\nSelect Angle: "))
0.707583

Now here is a couple of VERY interesting methods.
Want to select just one entity on the screen?

_$ (vla-getentity util 'obj 'ip "\nSelect Object: ")
nil

_$obj

#<VLA-OBJECT IAcadLine Olea57c4>

_$ip

#i<safearray...>

The reference to the Object is stored in the variable "obj" and the pickpoint is stored in variable "ip" in
the form of a safearray.

Would you like to create a safearray very easily and quickly :
_$ (vla-createtypedarray util 'thearray vlax-vbDouble 1.2 2.3 0.0)
nil

_$ thearray

#<safearray...>

Your safearray is stored in the variable "thearray"

Let's now have a look at getting some keywords from the user.

The following example forces the user to enter a keyword by setting the first parameter of
InitializeUserInput to 1, which disallows NULL input (pressing ENTER).

_$ (vla-InitializeUserInput util 1 "Line Arc Circle")

nil

_$ (setqg kword (vla-GetKeyword util "Enter an Option (Line/Circle/Arc) : "))
"Line"

Let's have a closer look at "InitiliazeUserInput.
"InitiliazeUserInput™ :

Syntax :

(vla-InitiliazeUserInput Object Bits Keyword)

Object : The object or objects this method applies to. In this case, the object is the Utility Object.

Bits : Integer; input-only
To set more than one condition at a time, add the values together in any combination. If this value is not
included or is set to 0, none of the control conditions apply.

1 |Disallows NULL input. This prevents the user from responding to the request by entering only
[Return] or a space.

2 |Disallows input of zero (0). This prevents the user from responding to the request by entering 0.

4 | Disallows negative values. This prevents the user from responding to the request by entering a
negative value.

8 |Does not check drawing limits, even if the LIMCHECK system variable is on. This enables the
user to enter a point outside the current drawing limits. This condition applies to the next user-
input function even if the AutoCAD LIMCHECK system variable is currently set.

16 |Not currently used.

32 |Uses dashed lines when drawing rubber-band lines or boxes. This causes the rubber-band line
or box that AutoCAD displays to be dashed instead of solid, for those methods that let the user
specify a point by selecting a location on the graphics screen. (Some display drivers use a
distinctive color instead of dashed lines.) If the POPUPS system variable is 0, AutoCAD ignores
this bit.

64 |Ignores Z coordinate of 3D points (GetDistance method only). This option ignores the Z
coordinate of 3D points returned by the GetDistance method, so an applicat